Main 第一推动丛书·诺贝尔奖得主作品(诺贝尔大咖带你探索黑洞、时空、量子的秘密,领略生命和意识演进的神奇之美)(新版套装共8册:《黑洞与时间弯曲》《终极理论之梦》《存在之轻》《不同的宇宙》《惊人的假说》《第二自然》《比天空更宽广》《真理与美》)

第一推动丛书·诺贝尔奖得主作品(诺贝尔大咖带你探索黑洞、时空、量子的秘密,领略生命和意识演进的神奇之美)(新版套装共8册:《黑洞与时间弯曲》《终极理论之梦》《存在之轻》《不同的宇宙》《惊人的假说》《第二自然》《比天空更宽广》《真理与美》)

0 / 0
How much do you like this book?
What’s the quality of the file?
Download the book for quality assessment
What’s the quality of the downloaded files?
Year:
2018
Language:
chinese
File:
EPUB, 26.61 MB
Download (epub, 26.61 MB)
0 comments
 

You can write a book review and share your experiences. Other readers will always be interested in your opinion of the books you've read. Whether you've loved the book or not, if you give your honest and detailed thoughts then people will find new books that are right for them.
目录

黑洞与时间弯曲

终极理论之梦

存在之轻

不同的宇宙

惊人的假说

第二自然

比天空更宽广

真理与美





版权信息


黑洞与时间弯曲

著者:[美]基普·S.索恩

译者:李泳

责任编辑:吴炜 颜汨 戴涛 杨波

装帧设计:邵年 李叶 李星霖 赵宛青

ISBN:9787535794550





目录

版权信息

总序

再版序 一个坠落苹果的两面:极端智慧与极致想象

序

前言

导引

序幕 黑洞之旅

第1章 空间和时间的相对论

第2章 空间和时间的卷曲

第3章 黑洞,发现与拒绝

第4章 白矮星之谜

第5章 坍缩是必然的

第6章 坍缩成什么

第7章 黄金年代

第8章 寻找

第9章 意外发现

第10章 曲率波

第11章 实在是什么

第12章 黑洞蒸发

第13章 洞里

第14章

虫洞和时间机器

尾声

致谢

人物

年表

名词

文献目录

参考文献*

译后记

重印后记 在黑洞的地平线上

重印后记





总序


《第一推动丛书》编委会

科学,特别是自然科学,最重要的目标之一,就是追寻科学本身的原动力,或曰追寻其第一推动。同时,科学的这种追求精神本身,又成为社会发展和人类进步的一种最基本的推动。

科学总是寻求发现和了解客观世界的新现象,研究和掌握新规律,总是在不懈地追求真理。科学是认真的、严谨的、实事求是的,同时,科学又是创造的。科学的最基本态度之一就是疑问,科学的最基本精神之一就是批判。

的确,科学活动,特别是自然科学活动,比起其他的人类活动来,其最基本特征就是不断进步。哪怕在其他方面倒退的时候,科学却总是进步着,即使是缓慢而艰难的进步。这表明,自然科学活动中包含着人类的最进步因素。

正是在这个意义上,科学堪称为人类进步的“第一推动”。

科学教育,特别是自然科学的教育,是提高人们素质的重要因素,是现代教育的一个核心。科学教育不仅使人获得生活和工作所需的知识和技能,更重要的是使人获得科学思想、科学精神、科学态度以及科学方法的熏陶和培养,使人获得非生物本能的智慧,获得非与生俱来的灵魂。可以这样说,没有科学的“教育”,只是培养信仰,而不是教育。没有受过科学教育的人,只能称为受过训练,而非受过教育。

正是在这个意义上,科学堪称为使人进化为现代人的“第一推动”。

近百年来,无数仁人志士意识到,强国富民再造中国离不开科学技术,他们为摆脱愚昧与无知做了艰苦卓绝的奋斗。中国的科学先贤们代代相传,不遗余力地为中国的进步献身于科学启蒙运动,以图完成国人的强国梦。然而可以说,这个目标远未达到。今日的中国需要新的科学启蒙,需要现代科学教育。只有全社会的人具备较高的科学素质,以科学的精神和思想、科学的态度和方法作为探讨和解决各类问题的共同基础和出发点,社会才能更好地向前发展和进步。因此,中国的进步离不开科学,是毋庸置疑的。

正是在这个意义上,似乎可以说,科学已被公认是中国进步所必不可少的推动。

然而,这并不意味着,科学的精神也同样地被公认和接受。虽然,科学已渗透到社会的各个领域和层面,科学的价值和地位也更高了,但是,毋庸讳言,在一定的范围内或某些特定时候,人们只是承认“科学是有用的”,只停留在对科学所带来的结果的接受和承认,而不是对科学的原动力——科学的精神的接受和承认。此种现象的存在也是不能忽视的。

科学的精神之一,是它自身就是自身的“第一推动”。也就是说,科学活动在原则上不隶属于服务于神学,不隶属于服务于儒学,科学活动在原则上也不隶属于服务于任何哲学。科学是超越宗教差别的,超越民族差别的,超越党派差别的,超越文化和地域差别的,科学是普适的、独立的,它自身就是自身的主宰。

湖南科学技术出版社精选了一批关于科学思想和科学精神的世界名著,请有关学者译成中文出版,其目的就是为了传播科学精神和科学思想,特别是自然科学的精神和思想,从而起到倡导科学精神,推动科技发展,对全民进行新的科学启蒙和科学教育的作用,为中国的进步做一点推动。丛书定名为“第一推动”,当然并非说其中每一册都是第一推动,但是可以肯定,蕴含在每一册中的科学的内容、观点、思想和精神,都会使你或多或少地更接近第一推动,或多或少地发现自身如何成为自身的主宰。





再版序 一个坠落苹果的两面:极端智慧与极致想象


龚曙光

2017年9月8日凌晨于抱朴庐

连我们自己也很惊讶,《第一推动丛书》已经出了25年。

或许,因为全神贯注于每一本书的编辑和出版细节,反倒忽视了这套丛书的出版历程,忽视了自己头上的黑发渐染霜雪,忽视了团队编辑的老退新替,忽视好些早年的读者已经成长为多个领域的栋梁。

对于一套丛书的出版而言,25年的确是一段不短的历程;对于科学研究的进程而言,四分之一个世纪更是一部跨越式的历史。古人“洞中方七日,世上已千秋”的时间感,用来形容人类科学探求的速律,倒也恰当; 和准确。回头看看我们逐年出版的这些科普著作,许多当年的假设已经被证实,也有一些结论被证伪;许多当年的理论已经被孵化,也有一些发明被淘汰……

无论这些著作阐释的学科和学说属于以上所说的哪种状况,都本质地呈现了科学探索的旨趣与真相:科学永远是一个求真的过程,所谓的真理,都只是这一过程中的阶段性成果。论证被想象讪笑,结论被假设挑衅,人类以其最优越的物种秉赋——智慧,让锐利无比的理性之刃,和绚烂无比的想象之花相克相生,相否相成。在形形色色的生活中,似乎没有哪一个领域如同科学探索一样,既是一次次伟大的理性历险,又是一次次极致的感性审美。科学家们穷其毕生所奉献的,不仅仅是我们无法发现的科学结论,还是我们无法展开的绚丽想象。在我们难以感知的极小与极大世界中,没有他们记历这些伟大历险和极致审美的科普著作,我们不但永远无法洞悉我们赖以生存世界的各种奥秘,无法领略我们难以抵达世界的各种美丽,更无法认知人类在找到真理和遭遇美景时的心路历程。在这个意义上,科普是人类极端智慧和极致审美的结晶,是物种独有的精神文本,是人类任何其他创造——神学、哲学、文学和艺术无法替代的文明载体。

在神学家给出“我是谁”的结论后,整个人类,不仅仅是科学家,包括庸常生活中的我们,都企图突破宗教教义的铁窗,自由探求世界的本质。于是,时间、物质和本源,成为了人类共同的终极探寻之地,成为了人类突破慵懒、挣脱琐碎、拒绝因袭的历险之旅。这一旅程中,引领着我们艰难而快乐前行的,是那一代又一代最伟大的科学家。他们是极端的智者和极致的幻想家,是真理的先知和审美的天使。

我曾有幸采访《时间简史》的作者史蒂芬·霍金,他痛苦地斜躺在轮椅上,用特制的语音器和我交谈。聆听着由他按击出的极其单调的金属般的音符,我确信,那个只留下萎缩的躯干和游丝一般生命气息的智者就是先知,就是上帝遣派给人类的孤独使者。倘若不是亲眼所见,你根本无法相信,那些深奥到极致而又浅白到极致,简练到极致而又美丽到极致的天书,竟是他蜷缩在轮椅上,用唯一能够动弹的手指,一个语音一个语音按击出来的。如果不是为了引导人类,你想象不出他人生此行还能有其他的目的。

无怪《时间简史》如此畅销!自出版始,每年都在中文图书的畅销榜上。其实何止《时间简史》,霍金的其他著作,《第一推动丛书》所遴选的其他作者著作,25年来都在热销。据此我们相信,这些著作不仅属于某一代人,甚至不仅属于20世纪。只要人类仍在为时间、物质乃至本源的命题所困扰,只要人类仍在为求真与审美的本能所驱动,丛书中的著作,便是永不过时的启蒙读本,永不熄灭的引领之光。虽然著作中的某些假说会被否定,某些理论会被超越,但科学家们探求真理的精神,思考宇宙的智慧,感悟时空的审美,必将与日月同辉,成为人类进化中永不腐朽的历史界碑。

因而在25年这一时间节点上,我们合集再版这套丛书,便不只是为了纪念出版行为本身,更多的则是为了彰显这些著作的不朽,为了向新的时代和新的读者告白:21世纪不仅需要科学的功利,而且需要科学的审美。

当然,我们深知,并非所有的发现都为人类带来福祉,并非所有的创造都为世界带来安宁。在科学仍在为政治集团和经济集团所利用,甚至垄断的时代,初衷与结果悖反、无辜与有罪并存的科学公案屡见不鲜。对于科学可能带来的负能量,只能由了解科技的公民用群体的意愿抑制和抵消:选择推进人类进化的科学方向,选择造福人类生存的科学发现,是每个现代公民对自己,也是对物种应当肩负的一份责任、应该表达的一种诉求!在这一理解上,我们将科普阅读不仅视为一种个人爱好,而且视为一种公共使命!

牛顿站在苹果树下,在苹果坠落的那一刹那,他的顿悟一定不只包含了对于地心引力的推断,而且包含了对于苹果与地球、地球与行星、行星与未知宇宙奇妙关系的想象。我相信,那不仅仅是一次枯燥之极的理性推演,而且是一次瑰丽之极的感性审美……

如果说,求真与审美,是这套丛书难以评估的价值,那么,极端的智慧与极致的想象,则是这套丛书无法穷尽的魅力!





序


史蒂芬·霍金

这本书讲的是我们在空间和时间观念上的革命及其重要结果,有些结果现在还不明朗。它也是一个迷人的故事,作者曾亲历过为认识黑洞这一也许是宇宙间最神秘事物的奋斗和成功。

过去人们常想,地球表面显然是平直的,它要么无限延伸,要么存在着边界,如果谁愚蠢地走得太远,他准会落下去。麦哲伦(Magellan)和其他环球旅行者的安全返回,令人们相信地球表面是弯曲的,自我封闭为一个球面;但人们仍然想当然地以为,这个球存在于欧几里得几何法则意义上的平直空间,即平行线永不相交的空间。然而,1915年,爱因斯坦提出一个理论,把空间和时间结合为一种叫“时空”的东西,它不是平直的,而是被其中的物质和能量弯曲(或卷曲)了。在我们邻近,时空几乎是平直的,在正常情况下不会出现曲率带来的差异。但在宇宙更远的地方,时空弯曲的某些结果甚至比爱因斯坦所认识的还要惊人。一个结果是,恒星可能在自身引力作用下坍缩,使周围空间发生弯曲,从而将自己同宇宙其他部分分裂开来。爱因斯坦本人不相信会发生这样的坍缩,但大多数人都证明了,这是他的理论所不可避免的结果。

那些人如何证明这个结果,如何发现坍缩在空间留下的黑洞的奇异性质,正是本书的主题。这是一部活的科学发现的历史,作者是发现的参与者;在这点上,它很像DNA结构(它使我们认识了遗传密码)的发现者沃森(James Watson)写的《双螺旋》。不过,与DNA发现不同的是,这里没有能指导探索者的实验结果,倒是黑洞理论早就建立起来了,那时还没有任何它们确实存在的观测证据。我不知道科学中还有没有别的例子,一个伟大的推论是完全依靠思想的基础而成功提出的。它说明了爱因斯坦理论的巨大威力和深远意义。

我们还有许多未知的事情。例如,落进黑洞的物体和信息会发生什么?它们会在宇宙其他地方或在另一个宇宙重新出现吗?我们能让空间和时间充分卷曲而回到过去吗?这些是我们为了认识宇宙而正在追寻的一部分问题,也许真有人能从未来回到现在,把答案告诉我们。





前言


Frederick Seitz

本书是在严格的物理学原理基础上写的,并结合了高度的想象。作者试图超越人们目前的牢固知识而进入一个与我们地球的日常生活全然不同的物理世界。他的主要目的是考察黑洞的里里外外——黑洞质量大,引力场强,实物粒子和光都不可能像平常离开太阳那样从它逃逸出来。观测者从远处靠近这样的黑洞会遭遇哪些事情,是根据广义相对论在“强引力”作用下还没有经过检验的预言而描述的;超出这个范围进入所谓黑洞“视界”区域的悬想,则是靠一种特别的勇气,实际上就是特别的狂想,这在索恩和他的国际伙伴中有很多,而且他们乐此不疲。这令人想起一位知名物理学家的妙语:“宇宙学家多犯错误,但少有怀疑。”读这本书的人应怀着两个目标:学一些我们物理宇宙中的尽管奇异却真实的可靠事实;欣赏那些我们还不那么有把握的奇思妙想。

作为开场白,我首先应该指出,爱因斯坦的广义相对论这一思辨科学的最伟大创造,不过是在四分之三世纪前才建立的。20世纪20年代初,它解释了水星运动与牛顿引力理论预言的偏离,后来又解释了哈勃(Hubble)和他的同事们在威尔逊山天文台观测到的遥远星云的红移。两次胜利以后,它沉默了几年,那时,多数物理学家的注意力都转向了量子物理学的诠释,转向了核物理、高能粒子物理和观测宇宙学的进步。

黑洞的概念在牛顿引力理论发现后不久,就以思辨方式提出来了。后来发现,通过适当修正,黑洞概念在相对论里也能找到自然的地位,不过,这需要我们将基本方程的解外推到极强的引力场——爱因斯坦当时认为这样的外推过程是可疑的。然而,钱德拉塞卡(Chandrasekhar)在1930年指出,根据相对论,质量超过某一临界值(即所谓钱德拉塞卡极限)的星体在耗尽高温的核能源后,将坍缩成为我们现在所说的黑洞。大约在20世纪30年代后期,茨维基(Zwicky)、奥本海默(Oppenheimer)和他的同事分别推广了这一工作。他们证明,存在一个质量范围,在此范围内的星体不会坍缩成黑洞,而将形成一种由致密的中子堆积构成的状态,即所谓的中子星。不论哪种情况,星体核能耗尽时的内部挤压都会伴随一个相对短时间的巨大能量喷发,喷发的结果,就是我们在遥远星云和银河系中偶尔会看到的光亮的超新星。

这些研究在第二次世界大战时中断了,然而在20世纪50年代和60年代,科学家们又怀着新的兴趣和热情回到了它的实验和理论的前沿,取得了三大进展。第一,从核物理和高能物理研究获得的知识在宇宙学理论中找到了自然的位置,支持了通常所说的宇宙形成的“大爆炸”理论。现在,许多证据都支持这样的观点:我们的宇宙是从一点由紧密堆积的粒子所形成的原初热汤(一般称它为“火球”)膨胀而来的。这一原初事件大约发生在100亿到200亿年前。对这个假说最戏剧性的支持也许是发现了出现在原初爆炸后期的波的退化遗迹。

第二,我们确实观测到了茨维基和奥本海默小组预言的中子星,它们的行为也同理论预言的一样。这使我们完全相信,超新星是经历了“最后的引力坍缩”(大概可以这么说)的恒星。如果说中子星能存在于某一确定的质量范围,那么也有理由认为黑洞是质量更大的恒星的产物,不过我们承认,大量的观测证据都将是间接的。事实上,这类间接的证据现在已经很多了。

最后,广义相对论的有效性还得到了另外几方面证据的支持。它们包括太阳系中航天器和行星轨道的高精度测量和某些星系对外来光线的“透镜”作用。最近又发现了大质量双星系运动的能量损失,可能是它们发射引力波的结果,这是相对论的一个重要预言。这些发现,不但使我们敢于相信广义相对论在黑洞附近的那些未经证实的预言,也为我们洞开了更广阔的想象空间。

几年前,联邦基金会(Commonwealth Fund)在M.E.Mathoney主席提议下,决定资助一项图书计划,邀请在不同领域工作的科学家们为受过教育的普通读者介绍他们的工作。索恩教授是其中的一位,很高兴本计划将他的书作为这一系列出版物的第九本。

推荐本书的联邦基金图书计划咨询委员会由下列成员组成:Lewis Thomas,医学博士,主任;Alexander G.Beam,医学博士,副主任;Lynn Margulis,哲学博士;Maclyn McCarty,医学博士;Lady Medawar, Berton Roueche, Frederick Seitz,哲学博士;Otto Westphal,医学博士,出版者代表是W.W.Norton&Company, Inc.的副主席兼编辑,Edwin Barber。





导引


这本书讲什么,怎么读?





30年来,我一直在探索,为的是去认识爱因斯坦为后代留下的遗产——他的相对论和相对论关于宇宙的预言——去寻找相对论失败的地方,看它如何失败,会有什么来取代它。

在探索中,我穿过奇异事物的迷宫:黑洞、白矮星、中子星、奇点、引力波、虫洞、时间弯曲和时间机器;在探索中,我学会了认识论:什么让理论成为“好的”?什么样的“超原理”主宰着自然法则?为什么即使在技术还无力检验预言时,物理学家也会认为我们知道自以为知道的事情?在探索中,我明白了科学家的头脑是如何工作的,我看到了不同头脑之间的巨大差异(如霍金的与我的),我知道了为什么为了更真切地理解宇宙需要那么多不同类型的科学家以他们自己的方式工作。通过我们和遍布全球的几百名参与者的探索,我认识了科学的国际性特征,科学团体在不同社会中的组织形式,以及科学与政治潮流的相互纠缠,特别像苏美之间的竞争。

我想在这本书里与非科学家和不同领域的科学家分享我的这些感受。一条历史线索将相互关联的话题串在一起,那是我们为阐明爱因斯坦的精神遗产而奋斗的历史,也就是我们从遗产中发现那些奇异的黑洞、奇点、引力波、虫洞和时间弯曲的预言的历史。

书从序幕开始:我要讲一个科幻故事,它会很快把读者引向书中的物理学和天文学概念。有些读者可能会对故事感到沮丧,这些概念(黑洞和它的视界、虫洞、潮汐力、奇点和引力波)来得太快,几乎没有解释。我告诉大家,不要管它,好好看故事,留下一点儿印象。每个概念在正文中还会以更令人愉快的方式重新提出来。读过全书后,你可以再回来看序幕,慢慢体会它的专业趣味。

书的主体(第1章到第14章)与序幕有完全不同的风味。中心线索是历史的,在历史的线索中交织着别的东西。我会用几页篇幅来追溯历史,然后离开历史讲一些题外话,然后又回到历史中来。这样,读者可以看到不同的思想观念如何精美地交织在一起,它们来自物理学、天体物理学、科学哲学、科学社会学和政治学。

有些物理学东西可以粗略看过,书后的物理学词汇表可能有一点帮助。

科学是公共的事业,形成我们宇宙观念的思想不是来自哪一个人或者某几个人,而是来自许多人的共同奋斗。因此,书中出现了许多人物,为帮助读者记住那些多次出现的人,书后列了一个“人物表”,对他们作了简单的介绍。

科学研究同人生一样,不同的人可能在同时探索许多相同的问题,一时的顿悟可能是几十年前的某些思想带来的灵感,而那些思想在几十年间却被忽略了。为了让读者能对此有些感受,本书将在时间里跳跃,从60年代跳到30年代,然后又回到70年代的历史主流(指20世纪,后同。——编者注)。对这样的时间旅行感到眼花的读者,可以看书后的历史年表。

我不求历史学家要求的完整、准确和公正。如果要求完整,多数读者会跟我一样厌倦地将书扔到一边;如果要求更准确,这本书就会堆满公式而成为难啃的专著;尽管我追求公正,但一定存在偏见。我和我要讲的东西关系太近了,我个人从60年代到今天都在亲历它的发展,我最好的几个朋友从30年代起就身在其中了。我力图通过大量的对其他探索者的录音访问(见参考文献)和更多地描述其他人的工作(见致谢)来弥补可能的缺陷,然而肯定还留着某些偏见。

为帮助那些想更完整、更准确、更公正地了解历史的读者,我在书后的注释里列举了很多历史记述的来源,也请读者去参考探索者们为向别人阐释自己的发现而写的原始专业论文。注释里还对某些问题作了更准确(因而技术性也更强)的讨论,这些问题在正文里可能因为太简单化而容易使人误会。[1]

记忆是靠不住的。相同事件的不同经历者,对那些事件可能有不同的回忆和解释,这些分歧我都放在注释中了。在正文里,我只谈自己对事物的最终看法,就当它们是真的了。但愿真历史学家能原谅我,非历史学家会感谢我。

我的导师约翰·惠勒(John Wheeler,他也是本书的中心人物之一)在我成长为一名物理学家的过程中,喜欢问他的朋友,“关于这样那样的事物,你学到的最重要的一样东西是什么?”很少有问题能记得这么清楚。这本书断断续续写了15年(多数是“断”的时候),快写完时,我也在问自己跟约翰同样的问题:“你想让你的读者从书中学到的最重要的一样东西是什么?”

我的回答是:人类思想那令人惊奇的力量——在迷途中往返,在思想里跳跃——去认识宇宙的复杂,发现主宰它的基本定律的终极的单纯、精妙和壮丽。





序幕 黑洞之旅


读者在

一个科幻故事里

遭遇黑洞

和我们在90年代所能认识的

关于它们的一切奇异性质





在人类头脑的所有概念中,[2]从独角兽到滴水嘴到氢弹,最奇异的也许还是黑洞:在空间中有一定边界的洞,任何事物都可以落进去,但没有东西能逃出来;一个强大引力能将光牢牢抓住的洞;一个能令空间弯曲和时间卷曲的洞。[3]跟独角兽和滴水嘴一样,黑洞似乎更多地出现在科幻小说和古代神话里,而不在真实的宇宙中。不过,经过了很好检验的物理学定律坚定地预言,黑洞是存在的,仅在我们的银河系里,可能就有几百万个,但它们太暗了,我们看不见;天文学家想发现它们也很困难。[4]

地狱

你有艘大飞船,自己做船长,带着计算机、机器人和几百名听话的船员,受世界地理学会委托,到遥远星际空间去探索黑洞,并把你的经历用电波发回地球。远航6年了,你的船正在减速接近织女星附近的一个黑洞,它叫“地狱”,离地球最近。[5]

图P.1在黑洞引力作用下,气体原子从各个方向流向黑洞



你和船员从飞船的视屏上看到了黑洞出现的证据:散布在星际空间的气体原子(每立方厘米近1个)正受着黑洞引力的吸引(图P.1)。它们从所有方向流向黑洞,距离远的地方,引力作用较弱,原子流得较慢;距离近的地方,引力作用较强,原子流得较快——在靠近黑洞的地方,引力更强,原子流更快,几乎和光一样。假如不采取措施,飞船也会被黑洞吸进去。

大副卡丽丝迅速小心地将飞船从冲向黑洞的路线转到圆形轨道,然后关掉引擎。你们环绕着黑洞,飞船靠着圆周运动的离心力顶住了黑洞的引力。想想你小时候玩过的投石器,系在旋转绳子一端,离心力把它向外推,而绳子的张力将它往里拉;飞船像投石器,黑洞的引力就起着这种张力的作用。这时,你和船员准备开始探测黑洞。

图P.2电磁波谱,以波长很长(频率很低)的无线电波到波长很短(频率很高)的γ射线。图中所用数字记号(1020,10-12等)见后面卡片P.1的讨论



先进行被动探测:用船上装备的望远镜研究电磁波(辐射),那是气体在流向黑洞时发射的。在远离黑洞的地方,气体原子很冷,只有绝对几摄氏度;因为冷,它们振动慢,缓慢的振动产生缓慢振荡的电磁波,意味着从一个波峰到下一个波峰的距离(即波长)很长。这些就是无线电波,见图P.2。在离黑洞较近的地方,引力作用下的原子流较快,它们相互碰撞,加热到几千度的高温。因为热,它们振动较快,发出振荡较快、波长较短的波,也就是你所认识的不同颜色的光:红、橙、黄、绿、蓝、紫(图P.2)。离黑洞更近的地方,引力更强,原子流更快,碰撞更剧烈,温度更高(几百万度),原子极快地振动,产生波长很短的电磁波:X射线。看到从黑洞附近喷出的X射线时,你会想起,在1972年,天体物理学家就是因为发现和研究了这样的X射线,才认定了遥远空间的第一个黑洞:天鹅X-1,距地球14 000光年。[6]

把望远镜对准离黑洞更近的地方,你看到从被加热到更高温度的原子发射出的γ射线。接着,你看到,在这片辉煌的景象中心,出现了一个绝对黑暗的圆球,那是一个黑洞,吞噬了从它背后的原子所发出的一切可见光、X射线和γ射线。你注视着超热的原子从四处流进黑洞。一旦进了黑洞,它们会比以前更热,振动也一定比以前更快,辐射也会更强,但它们的辐射逃不脱黑洞强大的引力。没有什么东西能逃出来。这就是为什么那洞是黑的,漆黑的一团。[7]

你拿望远镜更真切地审视那个黑球,发现它有绝对分明的边缘,即黑洞的表面,一个“逃不脱”的地方。刚好在表面以上的东西,如果有足够的力量,可以逃脱引力的魔掌:火箭能飞走;向上发射足够快的粒子能逃走;光当然也能逃走。但如果刚好在表面以下,那么不论是火箭、粒子、光、辐射或者其他任何东西,不论费多大力气,都不可能逃脱引力那无情的魔掌,永远不能到达你旋转的飞船。于是,黑洞的表面就像我们的地平线,你看不到它下面的东西。这也就是为什么我们把这表面称为黑洞的地平线。[8]

大副卡丽丝仔细测量了飞船轨道的周长,100万千米,大约是月亮绕地球轨道的一半。然后,她看外面遥远的恒星,看着它们在飞船头上旋转。通过测量恒星这种视运动的时间,她推测,飞船绕黑洞一周需要5分46秒,这就是飞船的轨道周期。

现在,你可以根据轨道周期和周长计算黑洞的质量。[9]计算方法和牛顿(Issac Newton)1685年计算太阳质量的方法相同:天体(太阳或黑洞)质量越大,它的引力作用越强,于是围绕它的物体(行星或飞船)为避免被它吸进去,必然也运动得越快,从而轨道周期一定就越短。用牛顿引力定律[10]的数学公式,你算出黑洞“地狱”的质量比太阳大10倍(“10个太阳质量”)。[11]

你知道,这个黑洞是很久以前恒星死亡形成的。恒星在死亡时顶不住自身引力的吸引而发生坍缩,就产生黑洞。[12]你也知道,恒星坍缩时质量不会改变,“地狱”今天的质量与它的母星很久以前的质量是一样的——或者说,几乎是一样的。实际上,自黑洞诞生以来,落进去的事物,如星际气体、岩石、飞船……都会增加它的质量,所以“地狱”的质量一定会比原来的母星大一点。

你知道这些,是因为你在旅行前学过引力的基本定律:牛顿在1687年发现了它的近似形式,爱因斯坦在1915年又从根本上修正了牛顿的近似,得到了更精确的形式。[13]你知道,黑洞的这些行为像石头落回地球一样,都是所谓广义相对论的爱因斯坦引力定律所要求的。石头不可能违背引力定律而向上落或者飘浮在天空,同样,黑洞也躲不开引力:它必然在恒星坍缩中诞生。它初生时的质量一定与恒星质量相同,每次落进来的事物都一定会增大它的质量。[14]同样,假如坍缩的恒星是旋转的,那么新生的黑洞也一定旋转;而黑洞的角动量(旋转快慢的精确度量)也一定与恒星的相同。

你在远航前还学过人类认识黑洞的历史。早在70年代,卡特尔(Brandon Carter)、霍金(Stephen Hawking)、伊斯雷尔(Werner Israel)和其他一些人就用爱因斯坦广义相对论表述的引力定律[15]发现,黑洞一定是极其简单的怪物:[16]黑洞的一切性质——它的引力作用强度、它对星光轨道的偏转、它的表面形状和大小——仅由三个参数决定:黑洞的质量,你已经知道了;黑洞旋转的角动量,你还不知道;还有黑洞的电荷。而且你还知道,星际空间的黑洞都不能带太多的电荷;假如电荷太多,它会很快从星际气体中吸引相反的电荷来中和自己的电荷。

黑洞旋转的时候,会像飞机旋转的螺旋桨带动空气那样,带着它附近的空间(相对于遥远的空间)像龙卷风一样做涡旋运动;空间的旋涡又在黑洞附近一切事物的运动中激起旋涡。[17]

于是,为了解“地狱”的角动量,你在落向黑洞的星际气体原子流中寻找龙卷风式的旋涡。你惊讶地发现,原子流离黑洞越来越近,运动越来越快,却没有任何旋涡的迹象。原子盘旋着落下,有些是顺时针的,另一些则是逆时针的,它们偶尔会发生碰撞,但总的说来,是无旋涡地径直向着黑洞下落的。你认定:这个10个太阳质量的黑洞几乎没有旋转,它的角动量近乎零。

知道了黑洞的质量和角动量,又知道它的电荷一定少得可以忽略,现在你可以用广义相对论公式来计算黑洞应该具有的一切性质了:引力作用强度、相应的偏转星光的能力以及更有意义的——黑洞视界的形状和大小。

假如黑洞在旋转,视界会有分明的北极和南极,也就是黑洞旋转的极点和下落的原子绕着它盘旋的极点。两极中间还会有明显的赤道,因视界旋转的离心力而向外凸起,跟旋转的地球赤道的凸起是一样的。[18]但“地狱”几乎没有旋转,所以一定不会有赤道的凸起。它的视界在引力作用下几乎完全是球形的,这正是你在望远镜里看到的样子。

至于大小,[19]广义相对论描述的物理学定律认为,黑洞质量越大,它的视界也一定越大。实际上,视界周长必然是以太阳质量为单位的黑洞质量乘以18.5千米。[20]你从轨道周长的测量得知黑洞有10个太阳那么重,因此视界周长肯定是185千米——和洛杉矶差不多大。你用望远镜仔细测量了周长,真是185千米,完全符合广义相对论的公式。

同你那100万千米的飞船轨道相比,视界的周长真是太小了,而被挤进这样一个小空间里的质量却有10个太阳那么大!假如黑洞是固体的,那么挤在这么小的空间里,它的平均密度将是每立方厘米2亿(2×108)吨——比水重2×1014倍(参见卡片P.1)。但黑洞不是固体。广义相对论认为,10个太阳的星体物质在很久以前通过坍缩形成黑洞,现在聚集在黑洞的中心——聚集在一个叫做奇点的小空间区域里。[21]“约10-33厘米大小的奇点(比原子核小1万亿亿倍)周围,除了正在向它落下的稀薄气体和气体发出的辐射以外,什么也没有。从奇点到视界几乎是空虚的,从视界到你的飞船,也差不多是空的。

卡片P.1

大数和小数的幂表示

在本书中,我偶尔会用“幂记号”来表示很大和很小的数。例如,5×106的意思是500万,或5 000 000,而5×10-6则是百万分之五,或0.000 005。

一般说,将幂表示的数变成标准的十进制数,就是将10的幂次作为小数点移动的位数。这样,5×106意味着5(5.000 000 00)的小数点右移6位,结果是5 000 000.00。同样,5×10-6意味着5的小数点左移6位,结果是0.000 005。



奇点和困在其中的星体物质躲在黑洞视界里,不论你等多久,被困的物质都不会再出现,黑洞的引力把它锁住了,它也不可能通过电波、光或者X射线向你传送信息。实际上,它完全从我们的宇宙消失了。惟一留下的是它强大的引力,对你那100万千米的轨道来说,它今天的引力作用与它在坍缩成黑洞以前的作用是一样的;但在视界内部,却没有什么东西能够抵抗它的引力了。

“视界距奇点多远呢?”你问自己。(你当然不会去测量它,那简直就是自杀;你也不可能从视界逃出来向世界地理学会报告你的测量结果。)由于奇点很小,只有10-33厘米,正好在黑洞中心,所以从奇点到视界的距离应等于视界的半径。你忍不住想用标准的方法来计算半径:用周长除以2π(6.283 185 307…)。但是,你在地球上的研究中知道要警惕这样的计算,不能随便相信。黑洞的巨大引力彻底扭曲了黑洞内部和附近的空间和时间的几何,[22]仿佛放在一张橡皮上的沉重的石块扭曲了橡皮的几何(图P.3);结果,视界的半径不等于它的周长除以2π。

“那没关系,”你告诉自己,“罗巴切夫斯基(Lobachevsky)、黎曼(Riemann)和其他伟大的数学家已经教过我们,如何在空间弯曲时计算圆的性质,爱因斯坦又把这些计算融入了他的引力定律的广义相对论描述。我可以用这些弯曲空间的公式来计算视界的半径。”

但是,你这时又想起,根据在地球上的研究,尽管黑洞的质量和角动量决定了视界和它外面的所有性质,但并没决定它的内部。广义相对论认为,在奇点附近,黑洞的内部应该是混沌的,绝不是球形的,[23]就像图P.3,一块棱角尖利的岩块重重地落在一张橡皮上,猛烈地弹起又落下,砸出一个尖尖的深坑。另外,黑洞中心的混沌性质不仅依赖于黑洞的质量和角动量,而且依赖于产生它的星体坍缩的细节和后来落进的星际气体的细节——那是你还不知道的。

图P.3一块重石头放在一张橡皮上使它变形。橡皮扭曲的几何类似于黑洞周围和内部空间变形的几何。例如,粗黑圆圈的周长远小于2π乘以它的半径,正如黑洞视界周长远小于2π乘以半径一样。进一步的讨论,见第3,13章



“那又怎么样呢?”你对自己说,“不管混沌的黑洞中心有什么结构,它的周长总是远比1厘米还小,这样,即使把它忽略了,我计算的视界半径也不会有太大的误差。”

然而,这时你又想起,空间在奇点附近可以极端卷曲,这样,混沌区域可能在不足1厘米的周长下有几百万千米的半径,就像图P.3的那块重重的石头把橡皮混沌的尖端砸得远远的,而区域的周长却是短短的。你的半径计算就可能会产生这么大的误差。视界的半径不可能简单地凭你掌握的那点儿黑洞质量和角动量的信息来计算。

你不再去想黑洞内部了,而准备探测它的视界附近。你不愿意拿生命去冒险,而让一个机器人去,并要他把探测结果传回飞船。一个10厘米高的机器人阿诺尔德(Arnold)将带着火箭去探险。他要做的事情很简单:先发动火箭,让自己从跟飞船一起的环行中停下来,然后关闭引擎,在黑洞引力作用下径直落下去。在下落中,阿诺尔德向飞船发出明亮的绿色激光束,光束的电磁振荡载着他的下落距离和他的电子系统状态的信息,就像电台发射的无线电波载着广播新闻的信号。

船员收到发回的激光束后,卡丽丝将解译阿诺尔德的距离和系统的信息,并测量光束的波长(或者等价地说,测量它的颜色;见图P.2)。波长的重要,在于它能说明阿诺尔德的运动有多快。当他离开飞船的运动越来越快时,飞船收到的他传回的绿光会因为多普勒频移而显出越来越大的波长,越来越红的颜色。[24](另外,还有部分由于光束摆脱引力作用而产生的红移。计算了阿诺尔德的速度后,卡丽丝会通过修正得到引力红移。)[25]

实验就这样开始了。阿诺尔德点燃火箭,离开飞船轨道,进入向黑洞下落的轨迹。在他开始下落时,卡丽丝开始计时,测量激光信号的到达时间。10秒过去了,激光信号表明一切系统运行正常,他已经下落了2 630千米。卡丽丝根据激光颜色算出,他现在正以每秒530千米的速度冲向黑洞。时钟走到20秒时,他下落的距离已经是刚才的4倍,10 520千米。时钟继续嘀嗒,60秒时,他的速度是每秒9 700千米,下落了135 000千米,到视界的距离过了5/6。

现在你必须密切注意了,接下来的几秒是决定性的。于是,卡丽丝打开高速记录系统来收集数据的所有细节。61秒,阿诺尔德报告,一切系统运行正常;视界在他下方14 000千米,他正以每秒13 000千米的速度落下去。61.7秒,仍然一切正常,还有1 700千米了,速度是每秒39 000千米,约光速的1/10;激光颜色开始剧变。接着的1/10秒里,你惊奇地看到激光从电磁波谱匆匆掠过,从绿到红,到红外,到微波,到无线电波——61.8秒时,它走完了,激光束完全消失了。阿诺尔德达到了光速,消失在视界里。在激光消失的最后1/10秒,阿诺尔德还在高兴地报告,“一切系统正常,正常;视界临近了,系统正常,正常……”

从激动中镇静下来,你开始检验记录的数据。你看到了激光波长移动的整个过程。当阿诺尔德下落时,激光信号的波长先慢慢增长,然后越来越快。但令人惊讶的是,波长增到4倍后,它加倍的速率几乎是一个常数,即每0.000 14秒增加1倍。经过33次加倍(0.004 6秒)后,波长达到4千米,是你记录系统的极限。以后,波长大概还会加倍的。波长变得无限大,需经过无限次的加倍,所以,在黑洞视界邻近也许还会出现波长极大、极暗淡的信号!

这是不是说阿诺尔德还没穿过视界,而且永远不会穿过呢?不。那最后的一丝波长永远在加倍的信号需要无限长的时间才能从黑洞引力束缚中逃出来。阿诺尔德在很多分钟以前就以光速飞过了视界。那些还在继续出来的微弱信号不过是因为走得太慢了,它们是过去遗留下来的。[26]

你研究了很久阿诺尔德发回的数据,然后好好睡一觉,恢复了精神,准备做下一次探险。这回,你要亲自去视界邻近看看,而且比阿诺尔德仔细得多。

告别船员,你钻进太空舱,脱离飞船,进入它的圆形轨道。然后,你轻轻发动火箭,将轨道运动减慢,这也稍稍减弱了太空舱所受的离心力,而黑洞的引力将你拉到一个小一些的圆形轨道。接着,你再轻轻发动火箭,圆轨道会再收缩一点。你就想这样安全平稳地螺旋式地到达视界上方的轨道,它的周长刚好是视界周长的1.000 1倍。在这里,你可以探测视界的许多性质,还能逃脱它那要命的魔掌。

然而,在你的轨道慢慢收缩时,一些奇怪的事情也开始发生了。在100 000千米周长的轨道上,你就能感觉到它们。你飘在太空舱里,脚朝黑洞,头朝星空。你会感到有一股微弱的力量在把你的脚向下拉,而把你的头向上拉,就像拉一块太妃糖,不过力量小一些。你知道,那是黑洞引力的结果:脚比头离黑洞更近,所以它受到的黑洞引力作用比头更强。这在地球上当然也是对的;不过,在地球上头脚引力差别很小,不到百万分之一,你根本觉察不出来。而飘浮在100 000千米周长轨道的太空舱里,情况就不同了,头脚引力差别是地球引力的八分之一(1/8“g”)。在身体中心,轨道运动的离心力正好抵消黑洞引力,仿佛引力不存在,而你在自由飘浮着。但是,你的脚多受着1/16g的向下拉的引力,在你的头上,引力较弱,而向外推的离心力却多1/16g。

你虽然感到惊讶,还是继续盘旋着下去;但是,你很快又忧虑起来。随着轨道缩小,头和脚的力量越来越强。在80 000千米的轨道上,拉力是1/4g;50 000千米时,等于地球引力;30 000千米时,是4倍地球引力。你咬牙忍着头脚分离的痛苦,继续下到20 000千米的轨道,那儿的力量是15g,再大你就忍不住了!你想把身体蜷缩起来,让头脚靠得近些,这样拉力可以小一点,但现在的拉力太强了,你不可能缩成一团,它总会在轨道半径方向上将你的头脚拉直。如果太空舱再落下去,你的身体就完了,会被完全撕裂!你没有希望到达黑洞的邻近。

你带着巨大的失望和痛苦停了下来,调转头,开始小心翼翼地回来。你盘旋着上升,穿过越来越长的轨道,最后回到飞船的货舱。

走进船长室,你就在主计算机DAWN上发泄你的失望。“提克哈依(Tikhii),提克哈依,”机器安慰你(用的是古俄语的词儿),“我知道你难过,但那都是你自己的错。在训练时就告诉过你那种头脚拉力的事儿,记得吗?它们就是地球上引起海洋潮汐的那种力。”[27]

你想起来了。你学过,在地球离月亮最近的一端,海洋受到最强的月亮引力,所以会涌向月亮。在相对的一端,海洋受的引力最弱,仿佛要离开月亮。结果,海洋在地球两端涌起,随地球自转,每24小时出现两次高潮。你记起来了,你经历的那种从头到脚的引力,就是这样的力,所以叫潮汐力。[28]你还记得,爱因斯坦的广义相对论把潮汐力描述为空间曲率和时间卷曲的结果,或者,用爱因斯坦自己的话说,是时空曲率。[29]潮汐引力与时空扭曲是并存的,一个总伴着另一个。不过,在海洋潮汐中,时空的扭曲太小,只有用极精确的仪器才能测量。

那么,阿诺尔德呢?他为什么一点儿也不怕黑洞的潮汐引力?DAWN解释说,原因有两点,第一,他比你小得多,只有10厘米高,作用在头和脚的引力差别相应也很小;第二,他是用超强钛合金做的,比你的骨头硬得多。

现在你明白了,阿诺尔德经历了多么可怕的一幕。当他穿越视界继续落向奇点时,一定感到潮汐力在增强,甚至最后超过了他那超强钛合金的抵抗能力。穿过黑洞0.000 2秒后,他破碎的身体接近了黑洞中心的奇点。这时,你又回忆起在地球上从广义相对论学到的东西:在那儿,黑洞的潮汐力又活跃起来了,混沌地跳跃着,在不同的方向拉扯阿诺尔德的残骸,一会儿这个方向,一会儿那个方向;越来越快,越来越强,最后他的每个原子都被扭曲而不能识别了。实际上,这就是奇点的本性:它是混沌振荡的时空曲率产生巨大随机潮汐力的一个区域。[30]

回忆黑洞研究的历史,你想起来了,1965年,英国物理学家彭罗斯(Roger Penrose)用广义相对论形式的物理学定律证明了奇点一定藏在黑洞内部;1969年,俄罗斯的栗弗席兹(Lifshitz)、卡拉特尼科夫(Khalatnikov)和别林斯基(Belinsky)这“三驾马车”发现,在奇点邻近,潮汐引力一定会混沌地振荡,它的行为就像我们做太妃糖,一会儿这么拉,一会儿那么压。[31]六七十年代,黑洞理论研究的黄金年代啊!但是,黄金年代的物理学家还不能充分认识爱因斯坦的广义相对论方程,黑洞行为的一个关键特性还困扰着他们。他们只能猜想,坍缩的恒星不论什么时候产生奇点,总会产生包围隐藏奇点的视界;奇点不可能是“裸露”的,不会让全宇宙都看到它。彭罗斯称它为“宇宙监督猜想”,因为假如它是对的,那么它将监督所有关于奇点的实验信息。人们永远也不可能用实验来检验他们关于奇点的认识,除非谁愿意付出生命的代价走进黑洞去测量;即使那样,他还是不能把结果从黑洞传出来,连一点儿纪念物也不会留下。

也许,2023年会有某个叫奈曼(Dame Abygaole Lyman)的人能最终解决宇宙监督是否正确的问题,但那结果与你无关。你的地图上画的只是黑洞里的奇点,而你不愿为它们去死。

幸运的是,在接近黑洞视界的外面,仍然有许多可以探测的现象。你决定亲自去经历这些现象,然后向世界地理学会报告。但你不能到“地狱”视界的附近去,那儿的潮汐力太强了。你一定要找一个潮汐力弱一些的黑洞。

DAWN提醒你,广义相对论预言,黑洞质量越大,视界上和视界外的潮汐引力越弱。这个似乎矛盾的行为有很简单的原因:潮汐力正比于黑洞质量除以周长的立方;质量增加时,视界周长也正比例地增加,视界附近的潮汐力实际上减小了。[32]一个100万太阳质量的黑洞,也就是比“地狱”重100 000倍的黑洞,视界也将大100 000倍,它的潮汐力将弱100亿(1010)倍。这是令人满意的,一点儿痛苦也不会有了!于是,你开始计划下一步的航行:去谢切特(Schechter)黑洞图上最近的那个100万太阳质量的黑洞——它叫“人马”(Sogittario),在银河系的中心,离我们30 100光年。

几天后,船员把“地狱”探险的报告,你被潮汐力拉伤的图像和原子落进黑洞的图像,都传回地球。26光年的距离,要走26年;报告最后到达地球后,世界地理学会将大肆宣扬。

在发回来的报告里,船员还谈了你们去银河中心的远航计划:飞船的火箭将一路保持地球的重力加速度(1g),这样你和船员在飞船里就处在舒适的地球重力作用下。在前一半旅程里,飞船加速向银河中心飞去,然后调转180°,以1g的加速度减速经历另一半旅程。整个旅程30 100光年,在地球看来,需要经过30 102年;但在飞船看来,只需要20年。[33]这是因为,根据爱因斯坦的狭义相对论定律,[34]高速的飞船会使飞船测量的时间“膨胀”;这种时间膨胀(或时间卷曲)在效果上就使飞船成了一台时间机器,让你在短暂的时间里走到地球遥远的未来。[35]

你们告诉世界地理学会,下一次消息将在探测了100万太阳质量的黑洞“人马”后,从银河系中心发回来。如果学会的会员想活着收到信息,他就得“冬眠”60 186年(从收到你们的消息到你们到达银河中心的时间是30 102—26=30 076年;另外,你们下一次消息从银河中心传到地球还需要30 11 0年)。

人马

经过20年的航行,飞船减速飞进了银河系中心。你远远看见气体和尘埃混合着从四面八方流向一个巨大的黑洞。卡丽丝调好火箭,将飞船带入视界上方的圆形轨道。你测量了轨道的周长和周期,把结果代进牛顿的公式,确定了黑洞的质量:100万个太阳质量,与谢切特黑洞图上说的一样。由于没有在下落的气体和尘埃里看到龙卷风似的旋涡,你推测黑洞不会旋转太快。视界应该是球状的,而周长一定是1 850万千米,是月球环绕地球轨道的8倍。

进一步检查下落气体后,你准备向视界靠近。为了安全,卡丽丝在你的太空舱和飞船主机DAWN间建立了激光联系。然后,你脱离飞船,调转太空舱,让它的喷气对着飞船轨道运动的方向;接着轻轻启动,使你的轨道运动慢下来,平稳地螺旋式地向里(向下)经过一个又一个圆形轨道。

一切都如预料的那样正常。但等到周长为5 500万千米的轨道——刚好是黑洞视界周长的3倍,火箭的推动却没有将你引入一个更小的轨道,而是要命地将你投向视界。你害怕极了,赶紧调转方向,以最大力量冲出来,回到5 500万千米以外的轨道。

“究竟出了什么事儿?!”你通过激光问DAWN。

“提克哈依,提克哈依,”她安慰你说,“你的轨道是根据牛顿的引力定律设计的,但牛顿的描述只是宇宙真实引力定律的一种近似。[36]在远离视界的地方,它是很好的近似,但在视界附近,它却糟透了。更精确的描述是爱因斯坦的广义相对论,在视界附近,它能以很高的精度与真实的引力定律一致。它预言,在接近视界时,引力作用会变得比牛顿预言的更强。为了保持圆形轨道,以离心力对抗强大的引力,你必须加强离心力,也就是说,你必须提高围绕黑洞的轨道速度。当你下落经过3倍视界周长的轨道时,你必须调转太空舱的方向,向前加速;如果你还向后减速的话,在你经过那个轨道时,引力将超过离心力,把你拉下去。”[37]

“该死的DAWN!”你想,“她总能回答我的问题,却从来不主动提出一些关键信息。我要犯错误时她从不警告!”你当然知道这是为什么。假如计算机都在我们犯错误之前提出警告,人类生活该是多么枯燥乏味!早在2032年,世界委员会就通过法案,在每台计算机里都植入霍布森障碍,[38]不许计算机警告。尽管DAWN也许很愿意警告你,但她实在不能克服霍布森障碍。

你压住怒火,调转太空舱,开始一系列的操作:向前加速,向下盘旋,进入内轨道;再向前,再盘旋,进入下一个轨道……从3个视界周长降到2.5,2.0,1.6,1.55,1.51,1.505到1.501到……太令人失望了!你越飞越快,轨道越来越小。在飞行速度接近光速时,你的轨道却只到1.5个视界周长。因为不能比光速更快,看来你没有希望靠这种办法走近视界了。

你又向DAWN求救,她一样安慰你,然后解释,1.5个视界周长以内根本没有圆形轨道。那儿的引力作用太强,没有离心力可以同它对抗,哪怕你以光速绕着黑洞旋转。DAWN告诉你,如果想走得更近,你必须放弃圆形飞行轨道,而应该直接朝视界落下去。靠火箭向下喷气,你可以避免灾难性的坠落。火箭的反冲力可以为你克服一些引力,让你慢慢落下,然后飘浮在视界上方,就像宇航员飘浮在月球上飞行的火箭里。

现在,你学会小心了。你问DAWN,这样持续强烈的火箭喷射会有什么后果?你解释说,你想漂在1.000 1视界周长的某个位置,在那儿,能经历视界的多数效应,而且还可以逃出来。“如果凭火箭支持太空舱,那么加速度的力量会有多大呢?”“1.5亿地球引力。”DAWN轻轻回答。

真令人泄气!你点燃火箭,盘旋着飞回了飞船。

好好睡一觉。醒来后,你拿广义相对论的黑洞公式算了5个小时,在谢切特黑洞图上找了3个小时,又与船员们讨论了1个小时,最后确立了下一步航行计划。

接着,船员把你在“人马”的经历传给世界地理学会(你们乐观地假定它还存在着)。报告最后讲了你的计划。

你的计算表明,黑洞越大,你飘浮在1.000 1视界周长上所需要的火箭动力越小。[39]为了不超过10个地球引力(这虽然也痛苦,但还能忍受),黑洞必须有15万亿(1.5×1013)个太阳质量。最近的这样的黑洞叫“巨人”,远在距我们10万(105)光年的银河系以外,也远在银河系围绕的1亿(108)光年的室女座星系团以外。实际上,它在类星体3C273附近,距银河系20亿(2×109)光年,大约是我们可以观测的宇宙边缘距离的10%。

船员在报告中解释,你的计划就是去“巨人”。前一半旅程以1g加速,后一半以1g减速,这样,在地球看来,旅行需要20亿年,而幸好因为有了速度产生的时间卷曲,你们在船上只需42年就够了。[40]如果世界地理学会不愿40亿年的漫长冬眠(飞船到“巨人”20亿年,信息发回地球20亿年),他们就收不到你们的下一次消息了。

巨人

42年后,飞船减速来到“巨人”的邻近。你们的头上是类星体3C273,两股灿烂的蓝色喷流正从它的中心射出,[41]下面就是“巨人”那黑暗的无底洞。落在“巨人”外的一个轨道上,你做了些常规测量,证实了它的确具有15万亿个太阳质量;另外,它旋转很慢。从这些数据,你算出它的视界周长是29光年。现在,你终于找到你向往的黑洞了!你能到它的邻近去探险,而不会遭遇难以忍受的巨大潮汐力和火箭加速度。既然探险有了安全保障,你决定飞船整体下降,不再只凭一个太空舱。不过,在飞船下降前,你命令船员拍摄一些照片:头顶巨大的类星体,“巨人”周围数万亿颗恒星,天空中几十亿个星系。他们还拍了在下面的“巨人”的黑洞圆盘,像地球看到的太阳那么大。乍看起来,黑洞似乎挡住了所有来自它背后的恒星和星系的光。但仔细看时,你的船员发现,黑洞的引力场像一个透镜,[42]恒星和星系的光偏转绕过视界的边缘,在黑洞圆盘边缘又被聚焦成一条明亮的细环。每一颗朦胧的恒星在环上都有几个像,一个是从黑洞左翼绕过的光线产生的;另一个是从右翼绕过的光线产生的;第3个是被吸引到绕黑洞的轨道的光在你的方向上发出时形成的;第4个是绕黑洞两周后跑出来的光线形成的,等等。结果,光线形成一条结构高度复杂的环,为了将来的研究,船员们拍摄了大量的细节照片。

照片拍好后,你命令卡丽丝开始启动飞船降落。但是,你还得耐心一点,黑洞引力太强,你们以1g加速、减速,需要13年才能到达你们计划的1.000 1视界周长!

飞船落下来了,船员们又拍了些照片,记录飞船周围天空的变化。最引人注目的变化是,飞船下面的黑洞圆盘长大了:慢慢地越来越大。你想,它会像巨大的黑色地板铺满你的脚下,然后停下来,头上还是像地球上明朗的天空。但黑盘子仍然在长大,从飞船周围升起,遮盖了一切,只留下头上一道明亮的圆形光路,你能从它看到外面的宇宙(图P.4)。你仿佛走进一个洞穴,越陷越深,只看见光亮的洞口在远处越来越小。

图P.4飞船飘在黑洞视界的上方,光通过那些轨道从遥远星系来到视界。黑洞引力使光线向下偏转(“引力透镜效应”),飞船上的人看见所有的光都汇聚成头上的一个圆形亮点



你越来越害怕,向DAWN求救:“卡丽丝是不是把我们的轨道算错了?我们是不是陷入黑洞视界了?我们要完了吗?!”

“提克哈依,提克哈依,”她安慰你,“我们没有危险,我们还在视界外面。黑暗笼罩整个天空,不过是黑洞引力的强烈透镜作用。看那儿,我指的地方,差不多就在头顶上,那是星系3C295。你下落之前,它还在水平的位置,离天顶90°。但是在这儿,‘巨人’的视界附近,黑洞引力强烈作用在来自3C295的光线上,使它们从水平偏转到几乎垂直,结果,3C295就出现在我们头上。”

你放心了,继续下降。工作台显示了飞船经过的径向(向下)距离和通过你们位置的绕黑洞的圆轨道的周长。刚开始时,每径向下落1千米,轨道周长减少6.283 185 307…千米,周长减少与半径减小的比为6.283 185 307千米:1千米,它等于2π,这正是欧几里得的标准圆周公式所预言的。但是现在你的飞船邻近视界,周长减小与半径减小的比比2π小得多:在10倍视界周长处,它是5.960 752 960;2倍处,是4.442 882 938;1.1倍处,是1.894 451 650;1.01倍处,是0.625 200 306。只有在弯曲空间里,才会出现与你在十几岁时学的标准欧几里得几何相差如此巨大的偏离。你现在看到的是爱因斯坦广义相对论所预言的与黑洞的潮汐力相伴的曲率。[43]

在最后阶段,卡丽丝需要费越来越大的力量才能靠火箭使飞船的降落速度慢下来,终于,飞船来到1.000 1个视界周长的轨道,凭着10g的向上加速度克服了黑洞强大的引力,静静地飘在视界的上方。它下落最后1千米时,周长只减小0.062 828 712千米。

船员们忍着10个地球重力的痛苦,拿出望远镜摄影机,投入周密的摄影工作。除了你们周围有一点儿因为下落气体碰撞生热而产生的微弱辐射外,要拍摄的电磁波都在头顶那个亮点里。那亮点很小,直径只有3弧度,是从地球看到的太阳大小的6倍。[44]但细看下去,那儿是围绕着“巨人”的所有恒星和宇宙中所有星系的像。出现在亮点正中心的星系是真正在头顶上的。从中心到边缘的55%,是像3C295那样的星系的像,假如没有黑洞的透镜效应,它们应该在水平位置,离天顶90°。从这里到边缘的35%,是在黑洞另一边,即在我们正下方的那些星系的像。最外面的30%,是每个星系的第二次像;而最外面的2%,是第三次像!

同样奇怪的是,所有恒星和星系的颜色都是假的。你知道的某个星系本是绿色的,而现在它似乎闪烁着微弱的X射线:“巨人”的引力把这个星系的辐射引向你们,使它增大了能量,波长从5×10-7米(绿光)减到5×10-9米(X射线)。同样,类星体3C273的外缘,你知道原来发射波长为5×10-5米的红外辐射,现在看到它闪着波长为5×10-7米的绿光。[45]

完整记录了头上的亮点后,你们开始关心飞船的内部。你们几乎都以为,在这黑洞附近,物理学定律会有某些改变,而这些改变也会影响每个人的生理。情况并不如此。你看大副卡丽丝,她显得很正常;再看二副布里特,他也很正常。你们握握手,你也感觉正常。你喝一杯水,除了10g的效应外,也跟平常一样。卡丽丝打开氩离子激光器,跟过去一样,它发出明亮的绿光;布里特发出一束红色激光脉冲,测量它从激光器到镜子然后返回所用的时间,再根据测量计算光的速度,结果与地球实验是绝对一样的:每秒299 792千米。

船里的一切事情都正常,仿佛它就停在一个具有10g重力的大质量行星表面。假如不向外看飞船头上那个怪异的亮点和周围吞噬一切的黑暗,你不会知道——或几乎不会知道,你正在一个黑洞视界的邻近,而完全不是在某个行星的表面。飞船里的时空跟外面的一样也会被黑洞弯曲,通过足够精确的测量,你可以测出它的曲率,例如,你可以测量头脚之间的潮汐拉伸。但是,尽管时空曲率在视界300万亿千米周长的尺度上起着巨大作用,在你那1千米的飞船尺度上,它的效应却小得可怜。曲率在飞船两端产生的潮汐力只是地球引力的百万亿分之一(10-14g),而你头脚间的力还要小1000倍!

这种正常也是值得留意的。为了进一步认识它,布里特从飞船放出一只太空舱,为了测量光速,让它带着脉冲式的激光器和反射镜。太空舱落向视界时,仪器测量了光脉冲从舱头的激光器到舱尾的反射镜然后返回的速度。太空舱的计算机把计算结果通过激光束传回飞船:“每秒299 792千米;299 792;299 792…”当太空舱离视界越来越近时,回来的激光的颜色也从绿移到红到红外到微波、无线电波……但所载信号都是一样的:“299 792;299 792;299 792…”然后,激光消失了。太空舱越过了视界,它里面的光速在它下落时也从来没有发生过改变,决定它那些电子系统运行的物理学定律也没有任何改变。

你对这些实验结果非常满意。在20世纪初,爱因斯坦曾宣告(他主要从哲学上考虑),局部的物理学定律(即定律所在区域很小,可以忽略时空曲率)在宇宙中应该是处处一样的。这个宣言被尊为物理学的一个基本原理:等效原理。[46]在后来的世纪里,等效原理常常经受实验的检验,但它还从来没有经历过像你们在“巨人”视界邻近做的实验那么生动而彻底的检验。

10个地球重力令你和你的船员们疲惫了。于是,你们准备航行的最后一步,回银河系。在航行之初,船员会把你们的“巨人”探险报告发回去;由于飞船很快也会近光速旅行,所以,从地球看来,报告会比飞船早一年到达银河系。

飞船升起离开“巨人”的时候,你的船员仔细用望远镜研究了头上的类星体3C273(图P.5)。[47]从类星体中心射出两股巨大的尖尖的热气体喷流,300万光年长。将望远镜瞄准中心,你们看到了喷流的源泉:一个厚厚的热气体环,大小不足1光年,黑洞在环的中心。这个被天体物理学家称为“吸积盘”的环一圈圈地绕着黑洞。船员们测量了它的旋转周期和周长,推测黑洞质量是20亿(2×109)太阳质量,比“巨人”小7 500倍,但远远大于银河系里的任何黑洞。在黑洞引力作用下,气流从环流向视界;接近黑洞时,会看到以前不曾见过的现象:气流像龙卷风一样绕着黑洞盘旋——黑洞一定在快速旋转!旋转轴很容易确定:气流旋涡的轴就是黑洞旋转的轴。你发现,两股喷流是沿着转轴射出来的。它们就在视界的南北两极生成,从黑洞的旋转和气体环中汲取能量,[48]就像龙卷风从大地卷起尘埃。

图P.5类星体3C273:气体环(“吸积盘”)包围的一个20亿太阳质量的黑洞,沿黑洞旋转轴射出两股巨大喷流



你很奇怪,为什么“巨人”与3C273有那么大的不同:为什么质量和尺度都大1 000倍的“巨人”没有环绕的气体圈和巨大的类星体喷流?布里特经过长时间的望远镜观测,找到了答案:每过几个月,就会有一颗在环绕3C273的小黑洞的轨道上的恒星坠向视界,被黑洞潮汐粉碎;恒星内约1个太阳质量的气体便喷射出来洒落在黑洞周围,在内摩擦力驱动下,慢慢进入气体环。这些新来的气体源源不断地补充着落进黑洞和喷流的气体。于是,气环和喷流总保持着丰富的气体来源,能持续地发光。

恒星当然也会坠向“巨人”,布里特解释。但是,“巨人”远远大于3C273,它视界外的潮汐力太弱,不可能粉碎任何星体。恒星会完全被“巨人”吞没而不能喷出内部的气体形成环。因为没有气体环,“巨人”也就无法产生喷流和其他类星体的剧烈现象。

你的飞船继续上升,远离“巨人”的引力。你计划着回家的航行。回到银河系的地球时,距你们离开已经40亿年了。人类社会一定发生了巨大变化,你们不想回去了。你和船员决定在一个旋转黑洞的周围开辟一块空间。你们知道,像3C273中的黑洞的旋转能可以为类星体喷流提供动力一样,一个小黑洞的旋转能也可以作为人类文明的能源。

你不想在某个黑洞看到已经有人在它周围建设了文明,所以,你的飞船没有飞向已经存在的快速旋转的黑洞,而是飞向某个恒星系统,在你到达不久,那儿会诞生新的快速旋转的黑洞。

你们离开地球时,银河系猎户座星云里有一个双星系,由两颗相互环绕的30个太阳质量的恒星构成。DAWN已经计算了,在你们去“巨人”时,那两颗恒星应该发生坍缩,分别形成一个24个太阳质量的无旋转黑洞(6个太阳质量的气体在坍缩中喷射出去了)。现在两个黑洞正相互环绕着,像一个双黑洞系;在环行中,它们会发出潮汐力的振荡(“时空曲率”的波动),也就是引力波。[49]像射出的子弹对枪有反冲作用一样,引力波也会对黑洞产生反冲,引力波反冲能减缓黑洞不可避免的螺旋下落的过程。你们稍稍调节一下飞船的加速度,就能赶上那螺旋下落的最后一幕:几天以后,你会看到两个黑洞无旋转的视界在绕着对方不停地旋转,越靠越近,越转越快,最后连在一起,形成一个更大的有旋涡的旋转视界。

原来的两个黑洞不旋转,不能作为你开拓的有效能源,不过,新生的这个快速旋转的黑洞却是很理想的!

家园

经过42年的航行,飞船最后减速来到猎户座星云里DAWN预言那两个黑洞所在的地方。它们真在那儿。通过测量落向黑洞的星际原子的轨道运动,你证实了DAWN的预言,两个视界没有旋转,每个黑洞重24个太阳质量。每个视界的周长为440千米,相距30 000千米;黑洞每13秒绕对方转一圈。把这些数据代入广义相对论的引力波反冲公式,你认定两个黑洞将在7天后结合。[50]你的船员有充分的时间准备好望远镜摄像机,等着记录结合的细节。通过拍摄星光聚焦形成的黑洞盘外的光环,船员们很容易监测黑洞的运动。

你想走得更近,看得更清楚,而又能很安全地躲过黑洞的潮汐力。你决定,飞船最好落在比黑洞轨道大10倍的轨道上——一个直径300 000千米、周长940 000千米的轨道。卡丽丝把飞船引入那个轨道,船员们开始进行摄影观测。

在接下来的6天里,两个黑洞越靠越近,轨道运动也越来越快。一天前,它们的距离从30 000千米收缩到18 000千米,轨道周期从13秒缩短到6.3秒;1小时前,距离是8 400千米,轨道周期是1.9秒;1分钟前,距离3 000千米,周期0.41秒;10秒前,距离1 900千米,周期0.21秒。

在最后10秒里,你和你的飞船开始摇晃了,先是很轻,然后越来越剧烈。仿佛一双巨手抓住你的头和脚,一会儿拉,一会儿压,劲儿越来越大,动作越来越快。不过,来得快,去得更快,一会儿就不摇了,一切又安静下来。

“怎么回事?”你向DAWN嘟哝,声音还在颤抖。

“提克哈依,提克哈依,”她安慰你说,“那是黑洞结合时产生的引力波的起伏的潮汐力。你习惯了只有用精密仪器才能探测出潮汐力的弱引力波。而这儿是在结合的黑洞附近,引力波非常强大——我们飞船的轨道假如小30倍,它就会被波动粉碎。但我们现在很安全,黑洞结合完了,引力波飘走了,它们飞向宇宙,为遥远的天文学家带去黑洞结合的交响曲。”[51]

你把望远镜对着下面的引力源,看到真像DAWN说的,黑洞结合完了。过去有两个黑洞的地方现在只有一个。从下落原子的旋涡,你知道那个黑洞在快速地旋转,它将成为你的船员和他们千秋万代的子孙的理想发动机。

卡丽丝测量了飞船轨道,得出黑洞有45个太阳质量。原来的两个黑洞共48个太阳质量,那么一定有3个太阳质量转化成了纯能量,被引力波带走了。难怪那些波曾那样强烈地震撼着你!

当你调转望远镜对着黑洞时,一个意外的东西从船外飞过,光亮向四面散开,然后在你的船边炸开一个洞。训练有素的船员和机器人立即各就各位,准备战斗,却没有发现攻击你们的敌船——于是,你又请DAWN来帮忙。她通过飞船的语音系统安慰大家:“提克哈依,提克哈依。我们没有遭遇攻击。那不过是一个怪异的原生黑洞在蒸发,然后爆炸了。”[52]

“什么?!”你喊了起来。

“一个原生黑洞,蒸发了,然后在爆炸中毁灭了。”DAWN回答。

“说明白些!”你命令,“你说原生是什么意思?你说蒸发和爆炸是什么意思?你在说废话。东西可以掉进黑洞,但没有东西能出来;没有什么能‘蒸发’。黑洞会永远存在,它总在增大,永不收缩。黑洞不可能‘爆炸’,不可能毁灭自己。那太离奇了!”

DAWN还是那么有耐性,她告诉你,“大物体——如人、恒星和恒星坍缩形成的黑洞——都是由经典的物理学定律决定的,如牛顿运动定律、爱因斯坦广义相对论定律等。相反,小物体——如分子、原子和比原子还小的黑洞——是由一组大不相同的量子物理学定律决定的。[53]经典定律严禁正常大小的黑洞蒸发、收缩、爆炸和毁灭,但量子定律不像这样,它们要求任何原子大小的黑洞慢慢蒸发、收缩,直到某个原子核大小的临界周长。这样的黑洞虽然小,却重达几十亿吨,那时它必然会在巨大的爆炸中毁灭自己。几十亿吨的质量通过爆炸转化为向外喷发的能量,比20世纪人类在地球上爆炸的最大的核武器的能量还大1万亿倍。刚才损坏我们飞船的就是这样的爆炸。”

“不过你不必担心会有更多的爆炸,”DAWN接着说,“因为小黑洞极少,所以这样的爆炸也很罕见。小黑洞都是200亿年前在宇宙大爆炸中生成的,这就是为什么它们叫原生黑洞。大爆炸只产生了那么些原生黑洞,而那些原生黑洞自诞生以来一直在慢慢地蒸发。偶尔会有个别黑洞达到最小临界尺度而爆炸。[54]而一个黑洞在经过我们的飞船时爆炸,是极不可能发生的事情——我们不过碰巧遇到了;而且,我们的飞船极不可能再碰到这样的黑洞了。”

你感觉轻松了,命令船员开始修理,而你和助手们则开始用望远镜观测你们下面那个有45个太阳质量的快速旋转的黑洞。

黑洞的旋转不仅表现在螺旋下落的原子,还表现在你们下面那个光环环绕的黑点的形状;那黑点像个扁南瓜,赤道隆起,两极平坦,正是黑洞旋转的离心力产生的结果。[55]但赤道隆起并不对称,盘的右边(黑洞旋转时离开你的那一边)显得比左边更大。据DAWN的解释,视界更容易捕获沿它右边向着你来而对着它旋转方向的星光,不太容易捕获从左边来的顺着它旋转方向的星光。

布里特测量了黑点的形状,并与广义相对论的黑洞公式做了比较,发现黑洞旋转的角动量是它的质量所能允许的角动量的96%。根据这样的角动量和黑洞的45个太阳质量,你计算了其他一些性质,包括它的旋转速率,每秒270周,它的赤道周长,533千米。

你对黑洞的旋转很感兴趣,以前从来不可能这么近地观察旋转黑洞。所以,虽然很过意不去,你还是请一个志愿者机器人到视界近旁去探险,并把经过发回来。你对那个机器人[他叫科罗(Kolob)]下达了详细的指令:“降到视界上10米的地方,靠你的火箭使自己静止下来,浮在飞船正下方。还要靠你的火箭抵抗引力的向下吸引和空间的龙卷风旋涡。”

科罗喜欢冒险,他离开船舱,向下落去。起先,他轻轻点燃火箭,就能抵抗空间的旋涡,让自己保持在飞船下面,但后来就困难了。当他到达的轨道周长为833千米,比视界大56%时,他的激光带回了这样的消息:“我顶不住旋涡;我顶不住了,顶不住了!”他像被龙卷风卷起的一块石头,被卷入了围绕黑洞的轨道。[56]

“别担心,”你告诉他,“尽可能顶住旋涡,继续降落,直到视界上方10厘米。”

科罗答应了。他接着下落,被卷入越来越快的环行运动。最后,他停止下落,飘在视界上方10米的地方,却几乎与视界本身同步地飞旋着,每秒270圈。不论费多大劲,都挡不住这种运动,因为空间旋涡,他永远也停不下来。

“换一个方向加速,”你命令,“既然不能比每秒270圈转得更慢,那你就转快一些。”

科罗试了试。他加速火箭,想让自己还在视界上方10米,但比先前运行更快。尽管他从火箭那里感觉到了平常的加速度,但你看他的运动却几乎没有什么改变。他仍然每秒环行270圈;在你还没来得及给他发出进一步指令时,他的燃料用完了,开始垂直下落;他发出的激光突然掠过电磁波谱,从绿变红,到红外,到无线电波,然后变黑,而他的飞行却没有改变。他去了,落进了黑洞,落向你永远也看不到的暴戾的奇点。

经过3个星期的痛苦、实验和望远镜观测,你们现在开始建设未来了。从遥远的行星取来材料,在黑洞周围建起环状“大梁工程”,周长500万千米,厚3.4千米,宽4 000千米。它旋转的速度恰到好处,每小时转两圈,这样,离心力正好能抵消大梁环中心(距里外两面各1.7千米)受到的黑洞引力。环的大小也是仔细考虑过的,喜欢1个地球重力的人可以在环的里面和外面建设家园,喜欢重力轻一点的人可以住在中心附近。引力的差别,部分来自旋转环的离心力,部分来自黑洞的潮汐力——用爱因斯坦的话说,即时空曲率。[57]

为这个环状世界提供光和热的电源来自黑洞:黑洞质量的20%以能量形式贮藏在视界附近空间的龙卷风式的旋涡里。[58]那是太阳一生所辐射的光和热的10 000倍!因为在视界外面,那是能够提取的。即使环状世界只能利用50%的能量,也仍然比太阳的能量供应大5 000倍。

能量的汲取原理与类星体是相同的:[59]船员们将磁场穿过黑洞视界,虽然它有离开的趋向,你们还是利用巨大的超导感应圈(图P.6)将它留在黑洞。视界旋转时,在附近的空间产生龙卷风旋涡,它反过来又与穿过的磁场相互作用而形成巨大的发电机。磁力线充当着输电线,电流从黑洞赤道流出(表现为电子从这里流进),沿着磁力线流向环状世界,将能量送到那儿。然后,它沿着别的磁力线离开环状世界,从南北两极流进黑洞(表现为质子从那儿流进)。通过调节磁场强度,环状世界的居民可以调节能量输出:早期的磁场弱,能量小;晚期的磁场强,能量大。随着能量的汲取,黑洞旋转会逐渐变慢,但仍然要过亿万年它才能耗尽所贮藏的巨大旋转能。

图P.6围着黑洞的大梁环上的城市和城市从黑洞的旋转汲取能量的电磁系统



这个人造的世界就是船员的“家园”,是他们子孙万代的家园,也是他们未来探索宇宙的基地。但是,你不喜欢这儿,你怀念地球和地球上的朋友,他们一定已经死去40多亿年了。你真想在你200年生命的最后1/4回到如诗如画的青年时代,那是很冒险的,也许不会有结果,但你还是想试试。

图P.7一个假想虫洞的两个洞口。从一个洞口进去,穿过一条短短的(虫洞喉)在超空间而不是我们宇宙中的通道,你会从另一个洞口出来



走向未来是很容易的,如你们经历的黑洞航行;回到过去却没那么简单。实际上,物理学的基本定律也许完全禁止这样的旅行。不过,DAWN告诉你,20世纪的物理学家曾猜想,通过一种叫虫洞的假想的空间卷曲,也许可以实现回到过去的时间旅行。[60]这种空间卷曲由两个入口(虫洞口)构成,像两个没有视界的黑洞,在宇宙中可以分离很远(图P.7)。从一个洞口进去的东西会发现一个很短的通道(虫洞的喉),通向另一个洞口。这条通道在超空间延伸,不穿过正常空间,所以从我们的宇宙看不到它。DAWN解释,通过虫洞的时间与通过我们宇宙的时间,在连结方式上可能大不相同。沿一个方向穿越虫洞,如从左到右,人们可能回到宇宙的过去,而从反方向穿越,即从右向左,他可能会跑到时间前头。这样的虫洞不仅是空间卷曲,也是时间卷曲的结果。

DAWN告诉你,量子引力定律要求,应该存在这种类型的非常微小的虫洞。[61]这些量子虫洞的大小只有10-33厘米,它们的存在也只是瞬间的事情——短短的10-43秒,当然不能用来作时间旅行。[62]它们出人意料地闪现,又出人意料地消失——忽来忽去,又似乎无处不在。碰巧,可能有个虫洞,一个洞口在今天的环状世界附近,另一个洞口在40亿年前你们启程远航时的地球附近。DAWN建议,在虫洞闪现时抓住它,然后像小时候吹气球那样让它膨胀,保持洞口打开,让你穿过它回到年轻时的故乡。

但DAWN也警告你,那是很危险的。物理学家猜想(尽管还没有证明),在膨胀的虫洞成为时间机器前的那一瞬间,它可能就在剧烈的爆炸中自我毁灭了。宇宙可能通过这样的办法来阻止它自己出现时间旅行的怪圈,例如,一个人可以回到过去,在母亲怀他之前将母亲杀死,从而不让他出生来杀害母亲。[63]

如果物理学家猜错了,DAWN就可以让虫洞打开几秒并张开足够你穿过的喉管。你在旁边等着,然后钻进去,经过几分之一秒(你自己的时间),你就回到了40亿年前你年轻时在地球的家乡。但是,假如时间机器自我毁灭了,你也会随它而去。你决定碰碰运气……

上面的故事像科幻小说,是的,的确有点儿像。我无法保证织女星旁有10个太阳质量的黑洞,银河系中心有100万个太阳质量的黑洞,或者宇宙什么地方有15万亿个太阳质量的黑洞。这些都是虚构的,然而却是合理的。我自己也怀疑,人类是否有力量成功进行星系际旅行,或者星际旅行,他们是否能在黑洞的周围建成大梁上的环状世界。这些也是虚构的。

不过,我能很有信心(当然还不能彻底)地保证,我们的宇宙存在着黑洞,它们具有故事里描述的那些性质。假如你的飞船飘浮在15万亿个太阳质量的黑洞视界上方,我保证船里的物理学定律与地球上的是一样的。当你看船外周围的天空时,你会发现整个宇宙都暗下来了,只有一个明亮的小光盘在照着你。我保证,假如你让一个机器人到旋转黑洞的附近去探险,不论它如何发动火箭,都只能以黑洞自身的旋转速度(在我说的例子中,即每秒270周)进退。我保证,快速旋转的黑洞能将它质量的29%作为旋转能贮藏起来,如果我们足够聪明,是能汲取和利用它的。

我从没见过黑洞,怎么能有信心保证这些事情呢?实际上,没人见过黑洞,天文学家也只发现了一点儿间接的黑洞存在的证据,[64]而关于它们的那些具体性质,什么观测证据也没有。我凭什么那么大胆地保证那么多的东西呢?原因很简单。假如我们理解正确的话,物理学定律预言那些黑洞性质,而且是毫不含糊地预言,实际上跟它们预言地球上的海洋潮汐(每次高潮和低潮的时间和高度)是一样的。根据牛顿的物理学定律,可以从数学公式导出从1999年到2010年的地球潮汐序列;同样,根据爱因斯坦的广义相对论定律,可以从数学计算导出黑洞视界和外面的一切性质。

我为什么相信物理学基本定律的广义相对论描述是高度精确的呢?毕竟,我们知道牛顿的描述在黑洞附近不再准确了。

基本定律的成功描述本身都暗示着它会在什么地方失效。[65]牛顿的描述告诉我们,它可能在黑洞附近失效(当然,我们只是在20世纪才从牛顿的描述中发现这一点)。同样,爱因斯坦的广义相对论描述的可靠性表现在黑洞外、视界上和几乎一切(但不完全)都落向它的中心奇点的黑洞内部。这是令我相信广义相对论预言的一个方面;另一方面的事实是,虽然广义相对论的黑洞预言还没有被直接检验过,但广义相对论的其他特征已经在地球上、在太阳系、在由两颗致密奇异的所谓脉冲星构成的双星系中找到了高度精确的验证。广义相对论成功经历了每一个考验。[66]

在过去的20年里,我参与了有关的理论物理学探索,得到了现在这些黑洞的认识,我也在探索通过天文学观测来检验黑洞的预言。我个人的成绩是渺小的,但与物理学家和天文学家同行在一起,我经历了探索的兴奋和发现的惊奇。我想尽可能地在这本书里把那些兴奋和惊奇的感觉带给天文学家和物理学家以外的朋友们。





第1章 空间和时间的相对论


爱因斯坦推翻了

牛顿的绝对空间和绝对时间的概念

1901年4月13日

德国·莱比锡

莱比锡大学

威廉·奥斯特瓦尔德教授

尊敬的教授先生!

请您原谅一个父亲,为了儿子的事情冒昧地来打扰您,尊敬的教授先生。

我先应该告诉您,我的儿子阿尔伯特今年22岁,他在苏黎世综合技术学校(Zurich Polytechnikum)学了4年,去年夏天,他成功地通过了数学和物理学的学位考试。从那以后,他一直想找一份助教的工作,这能帮助他继续学习理论和实验物理学,但是,还没有找到。在他求职的时候,人们给他的评语都称赞他的才干。无论如何,我可以向您保证,他非常好学,非常用功,非常爱他的科学。

所以,我儿子为现在还没有工作而深感不幸,而且他一天天地确信,他已经脱离了事业的轨道,而现在又没人同他来往。另外,他还认为他是我们的负担,一个没用的人,这使他感到压抑。

您,尊敬的教授先生,在目前活跃在物理学界的学者中,是我儿子最崇拜和尊敬的一个。所以,我冒昧地请您满足我的一个小小的要求,看看他发表在《物理学纪事》上的论文,如果可以,请您为他写几句鼓励的话,使他重新在生活和工作中快乐起来。

另外,如果您现在或者今年秋天能为他找一个助教的职位,我将无限感激。

我再次请您原谅我唐突地给您写信,我还要冒昧地说一句,我儿子一点儿也不知道我的无礼举动。

就说这些,尊敬的教授先生。您忠实的

赫尔曼·爱因斯坦[67]

是的,有一段时期,阿尔伯特·爱因斯坦真的很沮丧。自21岁从苏黎世综合技术学校毕业以来,8个月没有工作,他觉得自己失败了。

在综合技术学校(Polytechnikum,通常根据德文的第一个字母称为“ETH”[68]),爱因斯坦曾跟世界最著名的几个物理学家和数学家学习,但同他们的关系并不融洽。在世纪之交的科学世界里,大多数的教授(Professor)都要求和希望别人尊重他们,而爱因斯坦却并不那么尊重他们。因为还在小时候他就敢反权威,没经他自己亲自检验过的任何事情,他从不接受,而总要提出问题。他断言,“对权威的盲从是真理的最大敌人。”[69]他在ETH的两个最著名的物理学教授之一的韦伯(Heinrich Weber)曾恼火地抱怨:“爱因斯坦,你是个聪明的孩子,非常聪明的孩子。但你有一个最大的缺点:你听不进别人的任何东西。”他的另一个物理学教授佩内特(Jean Pernet)问他为什么不学医学、法律或者哲学,而偏学物理,“你可以做你喜欢的事情,”佩内特说,“我警告你都是为了你好。”

由于爱因斯坦对功课漠不关心,情况并没有好起来。“为了考试,不管你是不是喜欢,都得把所有的东西塞进脑子里。”他后来这么说。他的数学教授闵可夫斯基(Hermann Minkowski,在第2章里我们会更多地听到这个名字)对爱因斯坦的这种态度非常生气,说他是一只“懒狗”。

然而,爱因斯坦并不懒,他不过是有自己的选择。有些功课他全部都吸收了,而另外一些他忽略了。他更喜欢把时间花在自学和独立思考上。思考是一种乐趣,令人愉快,能带来满足。他可以靠自己学习“新”物理学,而这些物理学在韦伯的所有课程中却被省略了。

牛顿的绝对空间和时间,以太

“旧”物理学,即爱因斯坦能够从韦伯那儿学到的物理学,是一个庞大的知识体,我称它是牛顿的物理学,这并不因为它完全属于牛顿(他做不了这么多),而是因为它的基础是牛顿在17世纪奠定的。

19世纪后期,物理宇宙间的一切迥然不同的现象,都可以通过几个简单的牛顿物理学定律得到优美的解释。例如,所有与引力有关的现象都可以用牛顿运动和引力定律来解释:

·不受力作用的物体将沿直线匀速运动。

·在力的作用下,物体速度发生变化,变化率与力成正比,与物体质量成反比。

·宇宙间任意两个物体间存在着引力作用,它与物体质量的乘积成正比,与物体间的距离的平方成反比。

运用这三个定律的数学操作,[70]19世纪的物理学家可以解释行星绕太阳的轨道,卫星绕行星的轨道,海洋的潮汐和岩石的崩落,他们甚至知道怎么去称太阳和地球的质量。同样,运用一组简单的关于电和磁的定律,物理学家们可以解释闪电、磁铁、无线电波以及光的传播、衍射和反射。

名声和财富在等着那些在技术上运用牛顿定律的人。瓦特(James Watt)通过牛顿热定律的数学运算,提出如何将别人设计的原始蒸汽机改造为实用的机器,那就是后来以他名字命名的蒸汽机。莫尔斯(Samuel Morse)靠亨利(Joseph Henry)的帮助理解了电磁定律,发明了他的有很高实用价值的电报码。

物理学家跟发明家一样,都为他们能完美地理解宇宙而感到自豪。天地间万物似乎都遵从牛顿的物理学定律。人类征服了这些定律,它们也正引导人类去征服他们的环境——也许某一天,还会去征服整个宇宙。

所有这些旧的牢固确立的牛顿定律及其技术应用,爱因斯坦在韦伯的课中都学到了,而且学得很好。实际上,在ETH的最初几年,爱因斯坦是很欢迎韦伯的。1898年2月,他在给班里惟一的女生米列娃(Mileva Maric',他爱上她了)的信中写道:“韦伯的课讲得精彩极了,我急切地盼着听他的每一堂课。”[71]

但是到ETH的第四年,爱因斯坦不满意了。韦伯只讲了旧物理学,他完全忽略了近几十年来一些最重要的物理学进展,连麦克斯韦(James Clerk Maxwell)新发现的一组精妙的电磁学定律也忽略了。从麦克斯韦的定律,人们可以导出所有的电磁现象:磁体的行为、电火花、电流、无线电波、光。爱因斯坦只好通过阅读其他大学的教授写的最新著作来自学麦克斯韦的统一的电磁学定律,他大概还直率地向韦伯表示了他的不满,两人的关系恶化了。

追溯起来,韦伯在他的课程里忽略了太多的东西,而其中最重要的他显然是忽略了,越来越多的证据表明,牛顿物理学大厦的基础出现了裂缝,而这个基础的砖块和砂浆,就是牛顿的绝对空间和绝对时间的概念。

牛顿的绝对空间是日常经验的空间,它有三维:东—西、南—北、上—下。日常经验告诉我们,有而且只有这么一个空间。它是全人类、太阳、所有行星和恒星所共同拥有的空间。我们都在这个空间里以自己的方式和速度运动,不论如何运动,我们感受空间的方式是一样的。这个空间让我们感觉长、宽、高,而依照牛顿的观点,不论如何运动,只要测量足够精确,我们对同一物体会得到相同的长、宽、高。

牛顿的绝对时间是日常经验的时间,时间像岁月一样无情地流逝,我们用高质量的钟表,或者根据地球的转动和行星的运行来测量时间。全人类、太阳、所有行星和恒星,都共同经历着时间的流逝。依照牛顿的观点,不论如何运动,关于某个行星轨道的周期,或者某个政治家演说的时间,我们会得到一致的结果,只要我们都用足够精确的钟来测量。

如果牛顿的绝对空间和绝对时间的概念崩溃了,牛顿物理学定律的整个大厦就会倾覆。幸运的是,几年过去了,几十年过去了,两百年过去了,牛顿的概念基础依然牢固地屹立着。从行星天地到电的王国,到热的世界,它赢得了一个又一个科学胜利。这个基础没有露出丝毫破裂的迹象——不过,到了1881年,情况不同了。这一年,迈克尔逊(Albert Michelson)开始测量光的传播。

如果我们测量光(或者别的什么东西)的速度,那么显然,测量结果似乎一定会依赖于我们的运动方式,而牛顿定律也是这么要求的。如果我们在绝对空间中静止,那么我们会看到光在各个方向上的速度是一样的。反过来,如果我们在绝对空间中运动,比如说向东运动,那么我们将发现向东传播的光会慢下来而向西传播的光会快起来,正如人们在向东行驶的列车上看到的那样,东飞的鸟慢了而西飞的鸟却快了。

对鸟来说,决定它们飞行速度的是空气。鸟在空气中扇动翅膀,不管朝哪个方向,它们都以相同的最大速度飞行。类似地,根据牛顿的物理学定律,决定光的传播速度的是一种被称为以太的物质。光在以太中振荡它的电场和磁场,不论沿什么方向,它总是以一个普适的速度在以太中传播。由于(照牛顿的观点)以太在绝对空间中是静止的,所以任何静止的人在所有方向上将测得相同的光速,而运动者会测得不同的光速。[72]

现在来看地球,它在绝对空间中穿行。不管别的,我们只考虑它环绕太阳的运动。1月,它沿某个方向运动,6个月以后(7月),它又运动到相反的方向。对应于这种运动,我们在地球上应该测到不同方向的不同光速,它们的差异应随季节而变化——尽管这个变化很小(大约只有万分之一),因为相对于光来说,地球的速度太慢了。

对实验物理学家来说,验证这一预言是一个很有吸引力的挑战。1881年,28岁的美国青年阿尔伯特·迈克尔逊用他自己发明的灵巧而精确的实验技术(现在叫“迈克尔逊干涉度量法”[73])迎接了挑战。[74]迈克尔逊尽了最大努力,也没能发现任何有关光速随方向变化的证据。他在1881年的初次实验证明了光速在所有方向和任何季节都是相同的。1887年,迈克尔逊与化学家莫雷(Edward Morley)合作,在俄亥俄克里夫兰又进行了实验,以更高的精度证实了同样的结果。迈克尔逊很矛盾,既为他的发现高兴,也为结果感到失望。韦伯同19世纪90年代的其他大多数物理学家一样,对结果表示怀疑。

实验是很容易受怀疑的。有意义的实验常常是非常困难的——实在太难了,不论实验做得多么仔细,它们都可能产生错误的结果。哪怕是仪器的一点儿异常,或者温度的一点儿不可控制的波动,甚至仪器下地板的一点儿意外的振动,都会改变最后的实验结果。所以,一点儿也不奇怪,今天的物理学家同19世纪90年代的物理学家一样,偶尔也会碰到一些令人困惑的实验,这些实验要么互相矛盾,要么同我们对宇宙的本性和物理学定律的根深蒂固的信仰相矛盾。最近的例子是,一些实验宣布发现了“第五种力”(在标准的高度成功的物理学定律中还没有出现过),而另一些实验却否定这种力的存在;还有实验宣布发现了“冷聚变”(这是标准的物理学定律所禁戒的现象,如果物理学家对这些定律理解正确的话),而又有实验否定冷聚变的发生。几乎所有威胁我们信仰的实验都是错误的,它们的基本结果都是实验误差的假象。不过,它们偶尔也可能是正确的,将为我们指明一条通向认识自然的革命道路。

杰出物理学家的一个标志是,他有能力“闻出”哪些实验可信,哪些实验不可信;哪些值得忧虑,哪些可以忽略。随着技术的改进和实验的多次重复,真理最终总会澄清。但是,如果谁想为科学进步作出贡献,想靠自己去确认那些重大发现,那么他必须预先而不是事后凭直觉判断哪些实验是可信的。

19世纪90年代的几位大物理学家审查了迈克尔逊—莫雷实验,他们认为,细致的实验装备和精心的实验操作,保证了实验是令人信服的。他们认定,这个实验“味道很好”,有理由认为牛顿物理学的基础出了问题。相反,韦伯和其他大多数人却相信,只要有时间,再进一步做些实验,一切都会明白,牛顿物理学将跟以往多次的经历一样,最终还会胜利。他们认为,即使在大学课程里提及这个实验也是不妥的,不能误导年轻人的思想。[75]

爱尔兰物理学家菲兹杰拉德(George F.Fitzgerald)第一个根据它的表面价值接受了迈克尔逊—莫雷实验,并考虑了它的意义。他拿这个实验同其他实验对比,[76]得到一个根本的结论:问题在于物理学家对“长度”概念的理解,相应地,牛顿的绝对空间的概念可能也存在错误。1889年,他在美国《科学》杂志的一篇短文中写道:

我以极大的兴趣阅读了迈克尔逊先生和莫雷先生奇妙而精巧的实验……他们的结果似乎同其他实验相矛盾……我想提出一个大概是唯一能够协调这种矛盾的假说,那就是,物体在通过以太[通过绝对空间]或穿越它时,长度会发生变化,变化的量依赖于物体速度与光速之比的平方。





在沿地球运动的方向上,长度只发生了微小的收缩(十亿分之五),这可以(也确实能够)解释迈克尔逊—莫雷实验的零结果。[77]不过,这要求我们抛弃物理学家对事物行为的认识:没有什么已知的力能使运动物体在它们的运动方向上发生收缩,尽管收缩是那么微小。如果物理学家对空间的本性和对固体内部的分子力的认识是正确的,那么匀速运动的固体总会保持它在绝对空间中的形状和大小,而不管运动有多快。

阿姆斯特丹的洛伦兹(Hendrik Lorentz)也相信迈克尔逊—莫雷实验,而且他特别重视菲兹杰拉德关于运动物体收缩的建议。菲兹杰拉德听说后,给洛伦兹写了封信,表示很高兴,“我因为自己的观点在这儿被嘲笑惨了”。为了更深入地理解,洛伦兹——还有法国巴黎的庞加莱(Henri Poincaré)、英国剑桥的拉莫(Joseph Larmor),他们各自独立地重新考察了电磁学定律,发现了与菲兹杰拉德的收缩思想相吻合的一个特征。

如果我们以在绝对空间中静止的电场和磁场来表述麦克斯韦的电磁学定律,定律将具有特别简单而优美的数学形式。例如,一个定律的大意说,“在绝对空间静止的任何人看来,磁力线没有端点”[图1.1(a),1.1(b)]。然而,如果用一个运动者测量的稍微有点儿不同的场来表述麦克斯韦的定律,这些定律就会复杂而丑陋多了。特别是,“没有端点”的定律会变成,“在某些运动者看来,多数磁力线没有端点,但有些线被运动切断了,因而出现了端点。另外,当运动者挥动磁体时,新的磁力线又将被切断,然后联通,再切断,再联通”[图1.1(c)]。[78]

图1.1在19世纪的物理学(即牛顿物理学)框架内认识的一个麦克斯韦电磁学定律:(a)磁力线的概念:在一张纸下放一块条形磁铁,在纸上洒些铁粉,则铁粉将显出磁力线。每根磁力线从磁铁的北极出发,绕着磁铁然后进入它的南极,穿过磁铁又到达北极,在北极自相联结。因此,磁力线是封闭曲线,没有端点,像橡皮圈。“磁力线永远没有端点”的说法,是麦克斯韦定律最简单、最漂亮的形式。

(b)根据牛顿物理学,不论我们对磁铁做什么(例如,我们甚至可以大幅度挥动它),只要我们在绝对空间中静止,麦克斯韦定律的那种形式都是正确的。在静止观察者看来,没有磁力线会有端点。

(c)根据牛顿物理学,以在绝对空间中穿行的地球上的人的认识来看,麦克斯韦定律要复杂得多。如果运动者的磁铁静止在桌面上,那么有一些力线(大约亿分之一)会出现端点。如果大幅度地挥动磁铁,则因挥动会有另外的力线(万亿分之一)被暂时切断,然后又联结,再切断,再联结。尽管任何19世纪的物理学实验都不可能辨别出小小的亿分之一或万亿分之一的有端点的力线,但在洛伦兹、庞加莱和拉莫看来,麦克斯韦定律产生这样的预言,本身就是复杂而丑陋的



洛伦兹、庞加莱和拉莫的数学新发现使运动者的电磁学定律也漂亮起来了,实际上,它们看起来跟在绝对空间中静止的人所用的定律是完全一样的:“不论在什么条件下,磁力线永远没有端点。”为了让定律都有这么漂亮的形式,我们只需要假定(与牛顿的戒律相反),所有运动物体在运动方向上发生收缩,而收缩的量正好精确地等于菲兹杰拉德为解释迈克尔逊—莫雷实验所要求的那个量!

如果说,菲兹杰拉德收缩只是我们用来让电磁学定律变得普遍地简单和优美的“新物理学”,那么洛伦兹、庞加莱和拉莫呢?他们凭直觉相信,物理学定律本应是优美的,他们似乎已经抛弃了牛顿的戒律而坚定地相信收缩了。然而,只有收缩本身还不够,为使定律漂亮起来,我们还得假定,在宇宙中运动的人所测量的时间流比静止的人所测量的流更慢,运动让时间“膨胀”了。[79]

而在那个年代,牛顿的物理学定律是不容争议的:时间是绝对的。不论我们如何运动,时间总是以一个普适的速度无情地均匀地流逝着。如果牛顿定律是正确的,运动就不能使时间发生任何膨胀,正如它不能引起长度的任何收缩一样。不幸的是,19世纪90年代的钟远没有揭示这个事实的精度;另外,面对牛顿物理学在科学和技术上的胜利,而这些胜利又加固了绝对时间的基础,没有人愿意相信时间真会膨胀,洛伦兹、庞加莱和拉莫不过是在空谈。

爱因斯坦这时还是苏黎世的一个学生,还没有准备好去解决这些令人兴奋的问题,不过他已经开始思考了。1899年,他给朋友米列娃(他对她的浪漫感情正在萌芽)写信说:“我越来越相信,今天这样的运动物体的电动力学是不对的。”[80]在接下来的6年里,随着物理学家能力的成熟,他将考虑长度收缩和时间膨胀的观点及其实在意义。[81]

相反,韦伯对这类思辨的想法一点儿也不感兴趣。他依然堂皇地讲他的牛顿物理学,似乎一切还是那么完美有序,似乎没有出现什么物理学基础的裂缝。

爱因斯坦在ETH的学习快要结束了,他很聪明,各科成绩也不是真的很坏(满分为6分,他的平均分是4.91),所以他天真地认为,他可以在韦伯手下当一名ETH的物理学“助教”,并像通常那样以此为跳板进入学术圈。如果做助教,他可以开始自己的研究,几年后获博士学位。

但结果并不是这样的。在1900年8月通过综合物理—数学科目最后考试的四个学生中,有三个得到了ETH数学家的助教职位,爱因斯坦是第四个,什么也没得到。韦伯请了两名学工程的学生做助教,没要爱因斯坦。

爱因斯坦继续想办法。毕业一个月后,在9月,他申请ETH的一个空缺的数学助教职位,被拒绝了。冬天和春天,他向德国莱比锡的奥斯特瓦尔德(Wilhelm Ostwald)和荷兰莱顿的昂内斯(Heike Kamerlingh Onnes)写过申请,却似乎连礼节性的回信也没有收到过——尽管,他给昂内斯的信现在骄傲地陈列在莱顿的博物馆里,而奥斯特瓦尔德在10年后会第一个提名爱因斯坦获诺贝尔奖。甚至爱因斯坦父亲给奥斯特瓦尔德的信似乎也没有回音。

米列娃活泼漂亮,意志坚强,爱因斯坦对她的感情更强烈了。[82]1901年3月27日,他在给她的信中说,“我绝对相信,事情都怪韦伯……给别的教授写信一点儿用都没有,因为他们一定会向韦伯打听我的某些事情,而他只会说我的坏话。”[83]1901年4月14日,他写信给亲密伙伴格罗斯曼(Marcel Grossmann),“如果不是韦伯在背后玩花样,我早就可以找到[助教职位]了。尽管如此,我会尽力的,也不会放弃我的幽默……上帝创造了蠢驴,还给他一身厚皮。”[84]

他真需要一身厚皮,这不仅是因为他没找到工作,还因为他父母强烈反对他同米列娃结婚,而他跟米列娃的关系也正面临着风暴。关于米列娃,他母亲说,“玛利奇小姐给我带来了我一生最痛苦的时刻,如果我能作主,我会尽一切力量让她从我们的眼前消失,我实在不喜欢她。”[85]而米列娃说爱因斯坦的母亲,“那老太太不仅想尽办法让我的生活痛苦,也让她儿子痛苦,这似乎就是她为自己设计的生活目标……我没想到,竟会有这种没心没肺的恶人,真是坏透了!”[86]

爱因斯坦绝望了,他想摆脱对父母的经济依赖,想有平和的心境和自由,好将更主要的精力投到物理学中去。也许他能通过别的途径实现这个愿望,而不一定靠在大学当助教。他的ETH学历使他有资格在预科学校(高中)教书,所以他这么做了:1901年5月中旬,他设法在瑞士温特图尔的一所高等技术学校找了一份临时工作,代一位要服兵役的老师教数学。

爱因斯坦在给他的ETH历史老师斯特恩(Alfred Stern)的信中写道:“我[因为教书的工作]高兴得快发狂了,因为我今天接到消息说一切都安排妥了。至于谁那么好心把我推荐到那儿去,我一点儿也不知道,因为有人告诉我,我从没上过以前任何一个老师的荣誉簿。”[87]继在温特图尔后,1901年秋他又临时在瑞士沙夫豪森的一个高中教书,然后,1902年6月,他成为瑞士专利局的一名“三级技术员”,从而独立了,也稳定了。

尽管爱因斯坦在个人生活上接连遭遇风波(他长期与米列娃分离;1902年同米列娃生了一个女儿,也许是为了让爱因斯坦能在保守的瑞士保住工作,他们将孩子当养子抚养;[88]一年后,他不顾父母的强烈反对,跟米列娃结婚了),他仍然保持着最佳的精神状态和足够清醒的头脑去思考物理学问题:从1901年到1904年,通过对在液体(如水)和在金属中分子之间的力的研究及对热的本性的研究,他锻炼了自己作为物理学家的技能。他那些新颖而且基本的发现,通过5篇论文相继发表于20世纪初最权威的物理学杂志:《物理学纪事》(Annalen der Physik)。

在伯尔尼专利局的工作很好地培养了爱因斯坦的才能。在专利工作中,他得向别人指出那些提交上来的发明是否有意义——这通常是令人愉快的事情,而这些工作也使他的思想变得敏锐起来。工作之余,还有一半的自由时间和整个周末,他大部分都用来学习和思考物理学了,[89]而且还经常处在家庭的喧嚣中。

不论多大干扰,他总能集中精力。一个在他同米列娃结婚几年后去过他家的学生描述了他的这种能力:“在书房里,他坐在一堆满是数学公式的稿子前面,右手写字,左手抱着小儿子,还不断回答正在玩积木的大儿子阿尔伯特提的问题。‘等会儿,马上就完了,’说着,他把孩子交给我看几分钟,又继续工作了。”[90]

爱因斯坦在伯尔尼与其他物理学家没有往来(不过他确实有几个很亲密的不是物理学家的朋友,他可以同他们讨论科学和哲学)。对大多数物理学家来说,孤立是一种灾难,他们需要不断与在相同问题上进行研究的同事联系,以免自己的研究会因迷失方向而徒劳无获。但爱因斯坦的智力与众不同,他在孤独中获得的成果比在其他物理学家激发的环境下更多。

左:爱因斯坦坐在瑞士伯尔尼专利局的办公桌旁(约1905年);

右:爱因斯坦与妻子米列娃和儿子汉斯·阿尔伯特(约1904年)。

[左,耶路撒冷希伯来大学爱因斯坦档案馆提供;右,伯尔尼瑞士联邦爱因斯坦学会文献/档案馆提供。]



有时,同别人的交谈对他也有帮助——那不是因为他们为他带来了什么新颖深刻的见解或信息,而是因为他通过向别人解释疑难和问题,可以在自己头脑中澄清这些疑问。对他帮助特别大的是贝索(Michele Angelo Besso),一个意大利工程师,曾经是他在ETH的同学,而现在同他一起,也在专利局工作。关于贝索,爱因斯坦说:“在整个欧洲,我再也找不到更好的知音了。”[91]

爱因斯坦的相对空间和时间,绝对光速

对爱因斯坦来说,贝索在1905年5月给他的帮助是特别有意义的。那时,爱因斯坦从用心了几年的其他物理学问题回到麦克斯韦的电动力学定律和那些关于长度收缩和时间膨胀的诱人线索上来。他想找一个办法来为这些线索赋予意义,但思想遇到了障碍。为了清除绊脚石,他请贝索帮忙来了。据他后来回忆,“那是一个明媚的日子,我去找[贝索],开门见山地对他说:‘我最近遇到一个问题,太难了,我理解不了,所以我今天带着问题到这儿来,跟你讨论。’我同他谈了很多,后来我突然明白是怎么回事了。第二天我又去找他,开口就说:‘谢谢你,我已经完全解决这个问题了。’”

爱因斯坦的答案是:没有绝对空间那样的东西,也没有绝对时间那样的东西。牛顿的物理学基础完全崩溃了。至于以太,那是不存在的。

爱因斯坦抛弃了绝对空间,“在绝对空间中静止”的说法就绝对没有意义了。他声称,没有办法测量地球在绝对空间的运动,这就是为什么迈克尔逊—莫雷实验会出现那样的结果。我们只能测量地球相对于其他自然事物(如太阳、月亮)的速度,正如我们也只能测量火车相对于大地、空气等自然物的速度一样。不论地球、火车还是别的任何事物,都没有绝对运动的依据;运动纯粹是“相对的”。

爱因斯坦抛弃了绝对空间,也就抛弃了这样的观念:不论如何运动,关于某张桌子、某列火车或某个别的什么东西,每个人都能得到一样的长、宽和高。相反,爱因斯坦坚信,长、宽、高都是“相对的”概念,它们依赖于被测物体和测量者的相对运动。

爱因斯坦抛弃了绝对时间,也就抛弃了不论如何运动,每个人都得以相同方式经历时间流的观念。爱因斯坦宣布,时间是相对的。每一个以自己方式旅行的人,一定会与其他以不同方式旅行的人,经历不同的时间流。

在这些论断面前,我们难免会感到不安。如果它们是正确的,那么它们不但会破坏整个牛顿物理学定律大厦的基础,而且还将剥夺我们的普通感觉,变革我们对空间和时间的日常观念。

但是,爱因斯坦不仅是破坏者,也是创造者。他为我们提出了一个取代旧基础的新基础,这个基础当然是牢固的,而且已经证明,它同宇宙的和谐要完美得多。

爱因斯坦的新基础由两个新的基本原理构成:

·光速绝对性原理:不论空间和时间的本性如何,它们的构成必定使光速在所有方向上都绝对地相同,而且绝对与测量者的运动无关。

这个原理响亮地宣布了,迈克尔逊—莫雷实验是正确的。而且,不论未来的测量装置多么精确,它们一定会得出相同的结果:一个普适的光速。

·相对性原理:不论物理学定律的本质如何,它们都必须在同等的视点上处理所有的运动状态。

这个原理断然抛弃了绝对空间:如果物理学定律不在同等的视点上讨论所有的运动状态(例如,太阳的运动状态和地球的运动状态),那么利用这些物理定律,物理学家就能选出某个“优越的”运动状态(如太阳的)并将它定义为“绝对静止”状态。这样的话,绝对空间又将溜回物理学。在本章后面,我们还会谈这个问题。

根据光速的绝对性,爱因斯坦用后面卡片1.1中所述的精巧的逻辑论证方法证明了,如果你我彼此相对运动,那么,我所谓的空间一定是你的空间和你的时间的混合,而你所谓的空间一定是我的空间和我的时间的混合。

这儿说的“空间和时间的混合”,类似于地球上的方向。大自然为我们提供了两种确定方向的办法,一种关系着地球的自转,另一种关系着地磁场。在加利福尼亚的帕萨迪纳,地磁北极(罗盘针所指的方向)与真实北极(通过地球自转轴,即通过“北极星”的方向)偏离了大约20°,见图1.2。这意味着,为了在磁北方向上旅行,我们的路线必须部分(约80%)沿真北方向,部分(约20%)沿真东方向。在这个意义上,磁北是真北与真东的混合。同样,真北也是磁北和磁东的混合。

为了理解类似的空间和时间的混合(你的空间是我的空间和时间的混合,我的空间是你的空间和时间的混合),想象你有辆大马力的赛车,你喜欢在深夜以极高的速度在帕萨迪纳的科罗拉多林荫大道上飞驰,而我是警察,那时正在打瞌睡。你在汽车顶上拴了许多鞭炮,引擎盖前一只,车身后一只,中间还有很多,见图1.3(a)。当你通过我的岗亭时,照你的观察,你同时点燃鞭炮。

图1.2磁北是真北和真东的混合,而真北是磁北和磁东的混合



图1.3(b)是照你的视点画的。竖直线是你所测得的时间流(“你的时间”)。水平线是你测量的从车尾到车头的距离(“你的空间”)。因为鞭炮在你的空间里(也就是,照你的观察)是静止的,所以随着你的时间的流逝,它们保持在图中的同一个水平位置上,如虚线所示,每根线代表一只鞭炮。这些线都垂直向上延伸,表明不管时间如何流逝,空间里没有向右或向左的运动——延伸突然终结在鞭炮爆炸的时刻。爆炸的事件在图中以星号表示。

这种图叫作时空图,它以水平方向画空间,以垂直方向画时间,虚线叫世界线。因为它们表示当时间流过时,鞭炮在世界的什么地方运行。以后,我们还会更多地发挥时空图和世界线的作用。

如果谁在图中[图1.3(b)]的水平方向上运动,那么他实际上是在你的时间的一个固定时刻通过空间。相应地,我们方便地认为,图中的每一条水平线描述了你在你的时间的某个时刻所看到的空间(“你的空间”)。例如,点画的水平线就是你在鞭炮爆炸时刻的空间。如果谁在图中竖直地向上运动,那么他实际上是在你的空间的一个固定位置上穿过时间。相应地,我们方便地认为,时空图中的每一条竖直线(如每个鞭炮的世界线)描述了你在空间的某个位置上的时间流。

图1.3 (a)你的跑车车顶系着鞭炮在科罗拉多林荫大道上飞驰

(b)根据你的视点(行驶中的汽车)画的鞭炮运动和爆炸的时空图

(c)根据我的视点(静止在岗亭中)画的鞭炮运动和爆炸的时空图



在岗亭里的我,如果没打瞌睡的话,会画一幅很不一样的时空图来描绘你的汽车、你的鞭炮和爆炸[图1.3(c)]。我用竖直线画我所测得的时间流,用水平线画沿着科罗拉多林荫大道的距离。随着时间流过,每个鞭炮都跟汽车一起高速地在林荫大道上运动,相应地,鞭炮的世界线在图中向右倾斜:爆炸时,右边的鞭炮比开始时离得更远。现在,我们来看爱因斯坦逻辑论证(卡片1.1)的惊人结论。光速的绝对性要求,在我看来,鞭炮不会同时爆炸,即使在你看来,它们是同时爆炸的。据我的观点,你车上最边缘的鞭炮最先爆炸,而最前沿的鞭炮最后爆炸。相应的是,我们称为“你在爆炸时刻的空间”的点画线[图1.3(b)]在我的时空图中是倾斜的[图1.3(c)]。

图1.3(c)清楚地表明,为了在你的爆炸时刻通过你的空间(沿点画的爆炸线),我必须在我的空间和时间中穿过。从这个意义说,你的空间是我的空间和时间的混合,这跟我们说磁北是真北和真东的混合,是同样的意思[比较图1.3(c)和图1.2]。

你可能忍不住想说,“空间和时间的混合”不过是“同时性依赖于人们的运动状态”的一种复杂和虚张声势的说法而已。是的。不过,在爱因斯坦基础上建设的物理学家们发现,这样的思维方式是很有威力的,它曾帮助他们破译爱因斯坦留下的遗产(他的新物理学定律),在那些遗产中发现了一系列看似古怪的现象:黑洞、虫洞、奇点、时间弯曲和时间机器。

根据相对性原理和光速的绝对性原理,爱因斯坦得到了其他一些空间和时间的显著特征。用上面那个故事的话来说:

·爱因斯坦认为,当你在科罗拉多林荫大道上向东行驶时,我一定会发现你的空间和在其中静止的一切事物(你的车、你的鞭炮和你自己)在东西方向(而不是南北或上下方向)上缩短了,这就是菲兹杰拉德所推测的收缩,不过现在找到了坚实的基础:收缩是由空间和时间的特殊性质引起的,而不是什么作用在运动物体上的自然力的结果。

·同样,爱因斯坦也认为,当你向东运动时,你一定会发现我的空间和在其中静止的一切事物(我的岗亭、我的桌子和我自己)在东西方向(而不是南北方向和上下方向)上收缩了。你看我收缩,我看你收缩,这似乎令人困惑,但实际上不可能再有别的结果:它将你我的运动状态放在了一个平等的基础上,这正符合相对性原理。

·爱因斯坦还认为,在快速驶过时,我发现你的时间流慢了,也就是说,时间膨胀了。你车上仪表板的钟比我岗亭墙上的钟显得要慢些。与我相比,你说话更慢,你的头发长得更慢,你的年岁也过得更慢了。

·同样,根据相对性原理,当你从我身边驶过时,你会发现我的时间流慢了,你看到我岗亭墙上的钟比你仪表板上的钟走得慢。对你来说,我好像也是说话慢了,头发长慢了,我的年岁也过得慢了。

卡片1.1

爱因斯坦对空间和时间混合的证明

爱因斯坦的光速绝对性原理迫使空间和时间相混合,换句话说,它强调同时性是相对的:在你看来同时发生的事件(在你的时间的某一时刻,在你的空间中,如你的赛车在科罗拉多林荫大道上奔驰),在我这个坐在岗亭里的警察看来,并不是同时发生的。我将用与下面所示的时空图相联系的描述性语言来证明这一点,这个证明与爱因斯坦在1905年提出的基本相同。[92]



在你的车中央放一只闪光灯。把灯打开,它向车头发出一道向前的闪光,向车尾发出一道向后的闪光。由于两个闪光是同时发出的,由于根据你在车中的测量,它们经过相同的距离,由于它们以相同的速度传播(光速是绝对的),因此在你看来,它们一定同时到达车头和车尾,看下面左边的图。于是,根据你的观点,两个闪光事件(在车头的为A,车尾的为B)是同时发生的,而且刚好与你看到的图1.3中的鞭炮爆炸相吻合。

接下来让我们看看,从我的视点观察,当你的汽车快速从我眼前驶过时,两个闪光和它们到达的事件A、B是如何的。请看上面右边的图,据我的观点,你的车尾在向前运动,接近向后传来的闪光,所以,我看到它们相遇(事件B)比你看到的更早。同样,你的车头在向前运动,但远离向前的闪光,所以,我看到它们相遇(事件A)比你看到的更晚(这个结论的关键在于这样的事实:我所看到的两个闪光的速度是相同的;也就是说,结论依赖于光速的绝对性)。因此,我认为事件B发生在事件A的前头;同样,我看到靠近车尾的鞭炮比靠近车头的鞭炮先爆炸。

注意,爆炸在上面的时空图中的位置(在你的时间的某一时刻你所在的空间)与图1.3是一样的。这证明了我们将在下面讨论的空间和时间的混合。



我看你的时间流慢了,而你看我的时间流慢了,这怎么可能呢?这是什么逻辑啊?另外,我怎么能看到你的空间收缩了,而你看我的空间也收缩了?答案都依赖于同时的相对性。关于在我们各自空间中不同位置发生的事件是否同时,你和我没有一致的结论,而这种不协调看来正好协调了我们在时间流和空间收缩上的矛盾,它也靠这个方式保证了一切事物在逻辑上的一致。不过,为说明这种逻辑的一致,需要花太多的篇幅,我不想那么做,请你去看泰勒(Taylor)和惠勒(Wheeler)在1992年的那本书的第3章里的证明。

我们人类在日常生活中从来没有感觉到空间和时间的这类怪异行为,那是怎么回事呢?答案是,我们的运动太慢了。我们相对于彼此的运动速度,总是远远小于光速(每秒299 792千米)。假如你的车在科罗拉多林荫大道上以每小时150千米的速度疾驰,那么我知道你的时间流膨胀和你的空间收缩的量大约是一百万亿分之一(1×10-14),这对我们的感觉来说是太小了。不过,如果你的车以光速的87%的速度冲向我,那么,我(用反应极快的仪器)可以发现,你的时间流比我的慢2倍,而你也看到我的时间流比你的慢2倍;同样,我会看到你车上的所有物体在东西方向上的长度都只有正常情况下的一半;而你也会看到,我岗亭里的所有物体在东西方向上的长度也只有正常情况下的一半。实际上,20世纪后期的大量实验都证实了,空间和时间正是以这种方式发生作用的。[93]

爱因斯坦是如何得到这些空间和时间的基本描述的呢?

他没有检验什么实验结果。在他那个年代,只有低速运动,钟也不够精确,不可能表现出任何时间的膨胀和同时性的不一致,而且量杆也不够精确,表现不出长度的收缩。那时,相关的实验也只有那么几个,如迈克尔逊和莫雷证实地面光速可能在各个方向都相同的实验。这些数据对建立这样一个关于空间和时间的概念基础,是远远不够的!而且,爱因斯坦对这些实验几乎没怎么留意。

实际上,爱因斯坦是靠他天生的直觉来判断哪些事情是应该相信的。经过反复的思考,光速一定是一个独立于方向、独立于运动的普适常数,在他的直觉看来,成了显然的事实。他推论,只有在这种情况下,麦克斯韦的电磁学定律才会始终是简单而优美的(例如,“磁力线永远没有端点”),而且他坚信,在某个深层的意义上,宇宙也愿意拥有简单而优美的定律。就这样,他引进了一个新原理,他的光速绝对性原理,作为一切物理学的基础。

凭这个原理本身,不需要别的东西,就已经确保了建立在爱因斯坦基础上的物理学定律的大厦将完全不同于牛顿的。牛顿物理学家假定空间和时间是绝对的,他必然得到的结论是,光速是相对的——它依赖于事物的运动状态(像本章先前提到的鸟和火车的类比那样)。爱因斯坦假定光速是绝对的,他必然得到的结论是,空间和时间是相对的——它依赖于事物的运动状态。在得到空间和时间是相对的结论后,对简单和优美的追求又将爱因斯坦引向他的相对性原理:没有哪个运动状态会比其他状态更优越,在物理学定律看来,一切运动状态都是平等的。[94]

对爱因斯坦的物理学新基础的构建来说,不仅实验不重要,其他物理学家的思想也不重要。他几乎不关心别人在做什么,他甚至连洛伦兹、庞加莱、拉莫和其他作者在1896年到1905年间所写的关于空间、时间和以太的那些重要的专业论文也没读过一篇。

洛伦兹、彭加勒和拉莫也在他们的文章里摸索爱因斯坦那样的对我们空间和时间概念的修正,但他们却迷失在牛顿物理学强加给他们的错误概念的迷雾中,而爱因斯坦却能够完全抛弃这些错误概念。他相信宇宙喜欢简单和优美,他情愿追随这个信念,尽管它意味着破坏牛顿物理学的基础。这为他带来了无比清晰的空间和时间的新图景。

在本书后面,相对性原理还会发挥重要作用,所以我再用几页来更深入地解释一下。

我们首先应该有一个参照系的概念。一个参照系就是一个实验室,它有各种测量仪器,你可以在里面做任何你想做的测量。实验室跟它所有仪器一道在宇宙中运动,它们必须经历相同的运动。事实上,参照系的运动才是真正重要的概念,当代物理学家说“不同的参照系”时,他强调的正是两个实验室的不同运动状态,而不是不同的测量仪器。

参照系的实验室和仪器都不必是真的,它们完全可以是一种想象的结构,只存在于物理学家的头脑中,使他们可以问某个问题,例如,“假如我在小行星带中穿行的宇宙飞船里,我想测量某颗小行星的大小,结果会怎样?”这些物理学家实际是想象他们有一个固定在宇宙飞船上的参照系(实验室),想象他们可以用那个参照系的仪器来进行测量。

爱因斯坦在表述他的相对性原理时,没有用任意的参照系,而是用了一类相当特殊的参照系:一类既不自己加速也不受外力推动,而只靠自身惯性自由运动的参照系(实验室),因而它总是保持它开始的那种匀速运动的状态。爱因斯坦称这类参照系为惯性系,因为它们的运动完全受惯性的支配。

固定在点火的火箭上的参照系(火箭里的实验室)就不是惯性系,因为它的运动不仅受惯性作用,还受火箭推进的影响。推进的系统的运动不再是匀速的了。固定在航天器上的参照系,在重新进入地球大气层时,也不是惯性的,因为航天器表面与地球空气分子的摩擦会使它变慢,从而运动不再是匀速的。

最重要的是,在任何大质量物体(如地球)附近,所有参照系都受引力作用,没有什么办法可以让参照系(或其他事物)躲避引力的吸引。所以,在惯性系的局限下,爱因斯坦在1905年无法考虑当引力起重要作用时的物理状态。[95]实际上,他将我们的宇宙理想化为一个完全没有引力的世界。像这类极端的理想化对物理学的进步是很重要的。我们从概念上放弃宇宙的难以理解的方面,而当我们理性地把握了它的其余方面,即相对较容易的方面后,再回到那些困难的方面来。爱因斯坦在1905年理性地把握了没有引力的理想化的宇宙,然后他才转向一个更困难的任务,去认识真实的由引力主宰的宇宙的空间和时间的本性,这个任务最终迫使他得到这样的结论:引力卷曲了空间和时间(第2章)。

理解了惯性参照系的概念,我们现在更深入地来讨论爱因斯坦相对性原理更准确的形式:以在一个惯性系中所进行的测量来建立任何物理学定律,那么,当以在任何其他惯性系中所进行的测量来重建这些定律时,它们必须具有与在原来参照系中完全相同的数学形式和逻辑形式。换句话说,物理学定律不必为我们提供区别一个惯性系(一种匀速运动状态)和任何其他惯性系的方法。

看两个物理定律的例子,会更明白这一点:

·“初始静止在惯性参照系中的任意自由物体(即不受力作用的物体)将总保持静止;原来在惯性参照系中运动的任何自由物体,将永远以不变的速度沿直线向前运动。”如果(确实如此)我们有足够的理由相信,这个牛顿第一运动定律的相对论表述至少在一个惯性系中是正确的,那么,相对性原理认定,它在一切惯性参照系中也一定是正确的,不管这些参照系在宇宙的什么地方,也不管它们运动得多么快。

·麦克斯韦的电磁学定律必须在所有参照系中具有相同的数学形式。当我们在牛顿基础上建立这些定律时,它们并不如此(磁力线在某些参照系中可能有端点,而在另一些参照系中却没有端点),这一缺陷深深刺激了洛伦兹、彭加勒、拉莫和爱因斯坦。在爱因斯坦看来,这些定律在一个参照系,即以太所在的参照系中简单而优美,但在其他所有相对于以太运动的参照系中却复杂而丑陋,这是不能接受的。通过重建物理学基础,爱因斯坦也使麦克斯韦定律在各惯性参照系中都有了一个简单而优美的形式,而在每个惯性系中的形式都是一样的(例如,“磁力线永远不会有端点”)——这正符合他的相对性原理。

相对性原理实际上是一个形而上的原理(metaprinciple),原因是,它本身并不是一个物理学走律,而是一种模式或规则,(爱因斯坦断言)所有的物理学定律都必须遵从这个原理,不论它是什么样的定律,也不论它是关于电的和磁的,或原子的和分子的,还是蒸汽机的和赛车的。这个形而上原理的力量是惊人的,每个新提出的定律都得经受它的检验。如果新定律通过了它的检验(即如果定律在每个惯性系中是一样的),那么这个定律也就有希望描绘我们的宇宙行为。如果检验失败了,那么爱因斯坦会断言它没有希望了,应该被抛弃。

自1905年以来,近百年的所有经验告诉我们,爱因斯坦是对的。所有成功描述了真实宇宙的新定律都已证明是服从爱因斯坦的相对性原理的。这个形而上原理,已经成为物理学定律的定律。

1905年5月,爱因斯坦与贝索的讨论帮他打碎了思想上的拦路石,使他抛弃了绝对的时间和空间。接下来,他只思考和计算了几个星期,就形成了他的物理学新基础,导出了一系列关于空间、时间、电磁和高速运动物体行为本质的结论。其中的两个结论是很辉煌的:质量可以转化为能量(这将成为原子弹的基础,见第6章);每个物体的惯性在速度接近光速时必然会快速地增大,以至不论我们费多大力量推动它,都不可能使它达到或超过光速(“没有什么能比光还跑得快”)。[96]

6月底,爱因斯坦将他的思想和结论写成一篇论文,投给《物理学纪事》。他的论文有一个寻常意味的题目:“论运动物体的电动力学”,内容却是异乎寻常的。匆匆读过,我们会看到,爱因斯坦,这位瑞士专利局的“三级技术员”,提出了一个全新的物理学基础,提出了一个未来所有的物理学定律都必须遵从的形而上原理,还极大地修正了我们的空间和时间的观念,导出了辉煌的结论。很快,爱因斯坦的新基础和结论就出名了,叫做狭义相对论(说它“狭义”是因为它只是在引力不重要的特殊情况下正确描绘了宇宙)。

莱比锡《物理学纪事》编辑部在1905年6月30日收到爱因斯坦的论文,经过仔细认真的审读,论文通过了,被接受了,发表了。[97]

在论文发表后的几个星期里,爱因斯坦期待着来自当代大物理学家的反应。他的观点和结论太基本了,几乎没有实验基础,所以他等待着尖锐的批评和争论,然而,他等来的是冷漠的沉寂。许多个星期过去了,最后他收到一封来自柏林的信:马克斯·普朗克(Max Planck)询问文章里的几个技术细节,请他说明。爱因斯坦真是欣喜若狂!普朗克是还健在的最有名的物理学家之一,能引起他的注意,实在是令人满足的。第二年,当普朗克继续以爱因斯坦的相对性原理作为自己研究的核心工具时,爱因斯坦更加振奋了。因为普朗克的赞扬,因为慢慢来自其他杰出物理学家的赞扬,而最重要的,因为他本人极端的自信,当他所预料的争论在接下来的20年里真的纷扰在相对论周围时,爱因斯坦还能够坚定地挺过来。直到1922年,争论仍然很激烈,所以当瑞典科学院的秘书电告爱因斯坦获得诺贝尔奖时,还特别指出,相对论不在评奖所考虑的工作之内。

争论到30年代才最后结束,那时技术已经很先进了,可以为狭义相对论的预言带来精确的实验证据。到90年代,更没有丝毫可以怀疑的了:在斯坦福大学、康奈尔大学和其他地方的粒子加速器里,每天有1017以上的电子被加速到高达0.999 999 999 5个光速——而它们在这种超高速下的行为完全与爱因斯坦狭义相对论的物理学定律相吻合。例如,随着速度接近光速,电子的惯性增加了,使它不能达到光速;当电子与靶子碰撞时,它们产生高速的被称为μ子的粒子。以μ子自身的时间来测量,它们只能生存2.22微秒,但是以静止在实验室中的物理学家的时间来测量,由于时间膨胀,它们可以生存100微秒或更长的时间。

物理学定律的本质

爱因斯坦狭义相对论的成功是否意味着我们必须完全抛弃牛顿的物理学定律呢?显然不是。在日常生活里,在大多数科学领域和大多数技术应用中,牛顿定律仍然被广泛运用着。我们在计划乘飞机旅行时不会关心时间膨胀;工程师在设计飞机时也不会为长度收缩而焦虑。这类膨胀和收缩太小了,用不着关心。

当然,如果愿意,我们可以在日常生活中运用爱因斯坦的定律,而不用牛顿的。两者对一切物理效应都给出几乎完全一样的预言,因为日常生活中达到的相对速度同光速比起来真是太小了。

只有在相对速度接近光速时,爱因斯坦和牛顿的预言才开始出现严重的分歧。这时,也只有在这时,我们才必须抛弃牛顿而严格忠实于爱因斯坦的预言。

这是一个极普遍的模式的一个例子,在未来的章节里我们还会遇到。这种模式在20世纪的物理学历史上曾反复出现:一组定律(在我们这儿,即牛顿定律)起初被广泛接受,因为它与实验吻合得很好。但是,随着实验越来越精确,起初的那组定律只有在一定的极限范围,即在定律的有效范围内(对牛顿定律而言,就是速度远小于光速的范围)才能较好地成立。然后,物理学家努力从实验和理论去认识在那个有效范围的边界上发生的事情,最后,他们建立一组在边界内、边界附近和边界以外都高度成功的新定律(在牛顿的情形,爱因斯坦的狭义相对论不仅对低速有效,在近光速时也有效)。物理学定律的历史重复着这个过程,在以后的章节,我们还会遇到这样的重复:当引力变得重要时,狭义相对论将失败,取而代之的是一组叫广义相对论的新定律(第2章);在黑洞内部奇点的邻近,广义相对论将失败,取而代之的是一组叫量子引力的新定律(第13章)。

从旧定律到新定律的每一次转变,都有一个令人惊讶的特征:在每种情形下,物理学家(如果他们足够聪明)都不需要靠什么实验指引来告诉他们,旧定律会从哪儿开始崩溃,也就是说,有效性的边界在哪里。对牛顿物理学来说,我们已经看到了:麦克斯韦的电动力学定律没有很好地与牛顿物理学的绝对空间相吻合。在绝对空间中(即在以太的参照系中)静止时,麦克斯韦的定律简单而优美——例如,磁力线没有端点。在运动参照系中,它们变得复杂而丑陋——磁力线有时有端点。不过,当参照系以远小于光速的速度在绝对空间中运动时,这种复杂对实验结果的影响是可以忽略的,也就是说,几乎所有的力线都没有端点。只有在速度接近光速时,丑陋的复杂性才会带来容易测量的大影响:会出现许多端点。因此,即使没有迈克尔逊—莫雷实验,也有理由相信,牛顿物理学的有效范围是速度远小于光速,而牛顿定律可能会在速度接近光速时崩溃。

类似地,在第2章我们将看到狭义相对论如何预言自己会在引力出现时失败;而在第13章我们将看到广义相对论如何预言自己会在奇点的邻近失败。

在考虑上面那一系列定律(牛顿物理学、狭义相对论、广义相对论、量子引力)以及类似的一系列主宰物质结构和基本粒子的定律时,大多数物理学家都冲动地相信,这些系列的定律将汇聚成一组终极定律,它才真正主宰宇宙,它迫使宇宙照实际的方式运行,迫使雨水在窗户上凝结,迫使太阳燃烧核子,迫使黑洞在碰撞时产生引力波,等等。

可能会有人反驳说,在那个序列中,每一组定律“看起来”都与它前头的那些定律大不相同(例如,牛顿物理学的绝对时间看来就大不同于狭义相对论中的许多时间流)。“看起来”,这些定律没有任何汇聚的征兆。那么,我们为什么还期待着它们的汇聚呢?答案是,我们必须明确地区分一组定律的预言和这些定律所传达的理性图像(定律“像”什么)。我希望的汇聚只是就预言说的,但那也就是最终有意义的一切。理性的图像(牛顿物理学中的绝对时间,相对论物理学中的许多时间流)对最终的实在的本质来说是不重要的。事实上,我们有可能完全改变一组定律“像”什么,而一点儿也不改变它的预言。在第11章里,我将讨论这个值得注意的事情,会举一些例子,还要解释它对实在的本质有什么意义。

我为什么希望预言意义上的汇聚呢?因为我们所有的证据都指明了这一点。每组定律都比它前头的定律有更大的有效范围:牛顿定律在日常生活的一切范围内都是成功的,但它不适用于物理学家的粒子加速器,不适用于遥远宇宙的奇异现象,如脉冲星、类星体和黑洞;爱因斯坦的广义相对论定律在我们实验室的各个地方,在遥远宇宙的每一个角落都是成功的,但它在黑洞的深处,在宇宙大爆炸诞生的地方却失败了;量子引力的定律(我们现在还远没有很好地认识)也许会绝对地在任何地方都成功。

在这本书里,我将不加辩解地采纳这个观点:确实存在着一组终极的物理学定律(我们现在还不知道,但也许就是量子引力),它们真正地统治着我们周围的宇宙的各个角落。它们迫使宇宙按它实际的方式运行。如果要说得更准确些,我应该说,我们现在用的定律(如广义相对论)“近似于”真实定律,或者说,它是真实定律的“一种近似描述”。然而,我一般都不提这个限制,也不区分真实定律和我们的近似。在这些情形,我会断言,例如,“广义相对论定律[而不说真实定律]迫使黑洞将光牢牢地抓住,使它不能从黑洞的视界逃脱。”在认识宇宙的奋斗中,我的物理学同行们和我就是这么思考的。这是一种卓有成效的思想方法,为我们带来了关于坍缩的恒星、黑洞、引力波和其他现象的崭新而深刻的认识。

与这种观点对立的是,人们普遍认为,物理学家在同一些理论打交道,这些理论试图描述宇宙,但它们不过是人类的发明,不会对宇宙产生真正的威力。实际上,理论一词包含了太多的试探性和人为的诡辩意味,我将尽可能回避它。需要的时候,我将在真正主宰宇宙、迫使宇宙以实际方式运行的严格意义上,用物理学定律这个词组来代替它。





第2章 空间和时间的卷曲


赫尔曼·闵可夫斯基

统一了空间和时间,

而爱因斯坦令它们发生卷曲





闵可夫斯基的绝对时空

我要摆在你们面前的空间和时间的观点,已经从实验物理学的土壤中萌芽了,那里积蓄着它们的力量。它们是基本的。从今往后,空间和时间本身都将注定在黑暗中消失,只有二者的一种结合能保持为一个独立的实体。[98]





1908年9月,赫尔曼·闵可夫斯基用这样的话向世界宣布了关于空间和时间本性的新发现。

爱因斯坦已经证明,空间和时间是“相对的”。物体的长和时间的流从不同参照系看来是不同的。如果我相对于你运动,那么我的时间就不同于你的,我的空间也不同于你的。我的时间是你的时间和空间的混合,我的空间是你的空间和时间的混合。

现在,闵可夫斯基在爱因斯坦工作的基础上发现,宇宙是由一种绝对的而不是相对的四维“时空”结构构成的,这种四维结构在所有参照系看来(当然,我们得学会怎么去“看”)都是一样的,它的存在独立于参照系。

下面的故事(根据泰勒和惠勒1992年的书改编)说明了闵可夫斯基发现的基本思想。

从前,在遥远的东方的大海上有个名叫蒙里迪那的岛,岛上居民有着奇特的风俗和禁忌。每年6月,在一年中最长的那个白天,所有蒙里迪那岛的男人都要乘着一艘大帆船,到遥远的一个叫塞罗那的圣岛去朝觐一只巨大的蟾蜍,蟾蜍将整夜地用恒星和星河、脉冲星和类星体的离奇故事来蛊惑他们。第二天,这些男人会带着神的启示回到蒙里迪那,在未来的一年里,这启示将一直伴随着他们。

每年12月,在一年中最长的那个夜晚,蒙里迪那的女人向塞罗那远航。第二天,她们白天朝觐那只大蟾蜍,夜里回去,满怀着恒星和星河、类星体和脉冲星的幻境。

不过,蒙里迪那的女人绝对不能向岛上的任何一个男人讲她们到塞罗那圣岛的经历,也不能讲蟾蜍告诉她们的任何故事。蒙里迪那的男人也得遵守这个禁令,从不向女人透露他们每年一度的航行。

1905年夏天,蒙里迪那岛一个名叫阿尔伯特的激进青年,他才不管什么文明的禁忌。他发现了两张神圣的地图,并将图泄露给岛上所有的男人和女人。有一张地图是蒙里迪那的女祭司在女人的冬夜远航时用来指引帆船的,另一张是祭司在男人夏日航行时用的。圣图暴露了,岛上的男人是多么羞愧!女人也多么羞愧!但地图摆在那儿,每个人都看到了——太令人吃惊了,塞罗那的位置在两张图上不一样!女人是先向东航行210浪[1浪=201.76米],然后向北100浪;而男人是先向东航行164.5浪,再向北164.5浪。我们知道,宗教习俗是严厉的,女人和男人都必须在同一个塞罗那圣岛向同一只神圣的蟾蜍乞求每年的灵光。但事情怎么会这样呢?

大多数蒙里迪那人为了遮羞,说暴露的地图是假的。但有一位名叫赫尔曼的聪明老人相信图是真的。他为弄清地图差错的秘密奋斗了3年。最后,在1908年的一个秋日,真相大白了:原来,蒙里迪那男人的航行用的是磁性罗盘,而女人靠的是恒星(图2.1)。男人通过磁性确定北方和东方,女人则依靠由于地球自转而在头顶旋转的恒星来确定这些方向,两种定向方法偏离20°。当男人向他们确定的北方航行时,在女人看来,他们实际航行在“北偏东20°”的方向上,即约80%的北和20%的东。在这个意义上,男人的北方是女人的北方和东方的混合;同样,女人的北方也是男人的北方和东方的混合。

引导赫尔曼发现这一点的关键是毕达哥拉斯(Pythagoras)公式:取直角三角形的两个腰,将一个腰的平方与另一个腰的平方加起来,取平方根,结果就是三角形斜边的长。

图2.1两张重叠在一起的从蒙里迪那到塞罗那的路线图,图上有赫尔曼做的磁北、真北和绝对距离的记号



斜边就是从蒙里迪那到塞罗那的直线路径。在女人的地图上,两个腰沿真东和真北方向,照此,沿着这条直线路径的绝对距离是。根据男人的地图,腰在磁东和磁北方向,绝对距离为。向东和向北的距离是“相对”的,它依赖于地图的参照系是磁方向的还是真方向的。但是,不论根据哪一组相对距离,我们都能计算出同一个绝对的直线距离。

蒙里迪那居民和他们的禁忌文化对这个绝妙的发现有什么反应呢?历史没有记录。

赫尔曼·闵可夫斯基的发现,类似于蒙里迪那的那位赫尔曼老人的发现:假设你相对于我运动(比如,在你超高速的赛车里),那么,·像磁北是真北和真东的混合一样,我的时间也是你的时间和你的空间的混合。

·像磁东是真东和真北的混合一样,我的空间也是你的空间和你的时间的混合。

·正如磁北和磁东、真北和真东不过是为了在一个先存在的二维曲面,即地球表面上进行测量的不同方式,我的空间和时间,以及你的空间和时间,也不过是为了在一个先存在的被闵可夫斯基称为时空的四维“曲面”或“结构”上进行测量的不同方式。

·正如在地球表面存在一个从蒙里迪那到塞罗那的绝对直线距离——它可以根据毕达哥拉斯公式,用磁北和磁东方向的距离或用真北和真东方向的距离计算出来——在时空的任意两个事件之间,也存在着一个绝对的直线间隔,它可以根据一个与毕达哥拉斯相类似的公式,用我的或你的参照系中测量的长度和时间计算出来。

闵可夫斯基正是通过与毕达哥拉斯公式的类比(我称它为闵可夫斯基公式),发现了他的绝对时空。

闵可夫斯基公式的细节对本书其余部分是不重要的,我们没有必要掌握它(不过,我还是为好奇的读者在卡片2.1中将它们写出来了)。惟一重要的是,时空的事件类似于空间的点,而且时空中任意两个事件之间存在着一个绝对的间隔,完全类似于一张纸上任意两点间的直线距离。间隔的绝对性(不论用谁的参照系来计算,它的值都是一样92的)说明,时空有绝对的实在性,它是一个具有若干与运动无关的性质的四维结构。

卡片2.1

闵可夫斯基公式

你驾着1米长的大马力赛车,以每秒162 000千米的速度(光速的54%)呼啸着从我身边飞过,回想一下图1.3的情形。下面的时空图画出了你的车的运动。图(a)是以你的视点画的,图(b)以我的视点。当你经过我时,汽车回火,从尾气管排出一阵烟,这个回火事件在图中记为B。2微秒(百万分之二秒)后,你看到前面防撞器上的鞭炮爆了,爆炸事件记为D。



因为空间和时间是相对的(你的空间是我的空间和时间的混合),所以,关于回火事件B和爆炸事件D之间的时间间隔,你和我有不同的意见。照你的时间,它们间隔2.0微秒,而在我看来,是4.51微秒。同样,关于事件的空间间隔我们的意见也不同,在你的空间中,是1.0千米,而在我的空间中是1.57千米。尽管有时间和空间上的分歧,我们都同意,两个分离的事件在四维时空里由一条直线联系着,而且我们一致认为,沿这条直线的“绝对间隔”(线的时空长度)是0.8千米。(这类似于蒙里迪那岛的男人和女人们在蒙里迪那和塞罗那之间的直线距离上达成一致。)

我们可以用闵可夫斯基的公式来计算绝对间隔:将事件的时间间隔乘上光速(每秒299 792千米),得到图中所示的四舍五入的数(你的为0.60千米,我的为1.35千米)。然后,将事件的时间间隔和空间间隔平方,从平方的空间间隔中减去平方的时间间隔,再取平方根。(这类似于蒙里迪那人东方和北方的距离平方,加起来,然后取平方根。)从图中可以看到,尽管你的时间和空间间隔不同于我的,关于绝对间隔,我们还是得到了相同的答案:0.8千米。

你和我遵从的闵可夫斯基公式与蒙里迪那人遵从的毕达哥拉斯公式之间,只有一点重要的差别:我们的平方间隔是相减而不是相加。这里的减法是同你正在探索的时空与蒙里迪那人所经历的地球表面的物理学差异密切联系着的——不过,不怕你生气,我不想解释这种联系了,你可以去看泰勒和惠勒(1992)的讨论。



在接下来的几页里我们将看到,引力是由时空的绝对的四维结构的曲率(卷曲的结果)产生的,黑洞、虫洞、引力波和奇点都完全而且惟一地由这个结构形成,也就是说,它们都是时空卷曲的一个特殊类型。

时空的绝对结构关联着那么迷人的现象,而你和我却不能在日常生活中经历,真令人灰心。问题还是出在我们的低速技术(例如,比光慢得多的赛车)。因为彼此的相对运动太慢,我们所经历的空间和时间是分离的两家,我们从来没有发现你和我测量的长度和时间有什么不同(我们从来没有发现空间和时间是相对的),也从来没有发现我们相对的空间和时间统一形成了一个绝对的四维时空结构。

你可能记得,闵可夫斯基就是在爱因斯坦读书时叫他懒狗的那位数学教授。1902年,俄国出身的闵可夫斯基离开了苏黎世ETH,到德国哥廷根(它那时跟现在一样有国际声誉)去担任更有吸引力的教授。在哥廷根,闵可夫斯基研究了爱因斯坦关于狭义相对论的论文,印象很深,这引导他发现了四维时空的绝对性质。

爱因斯坦听说闵可夫斯基的发现时,并不在意。闵可夫斯基只是用一种新的更数学化的语言重写了狭义相对论的定律,而对爱因斯坦来说,数学掩盖了定律背后的物理意义。因为闵可夫斯基不断宣扬他的时空观如何美妙,爱因斯坦开始笑话哥廷根的数学家:他们用那么复杂的语言来描述相对论,物理学家简直弄不懂了。

事实上,笑话落到了爱因斯坦自己身上。在4年后的1912年,他将认识到,为了在狭义相对论中纳入引力,闵可夫斯基的绝对时空是根本性的基础。遗憾的是,闵可夫斯基没能活着看到这一点。1909年,他死于阑尾炎,那年他45岁。

在本章后面,我还会回来谈闵可夫斯基的绝对时空。不过现在,我得先引出我的故事的另一条线索:牛顿的引力定律和爱因斯坦为了协调它与狭义相对论而迈出的笫一步,这是走在他借鉴闵可夫斯基成果之前的一步。

牛顿的引力定律,爱因斯坦协调它与相对论的第一步

牛顿将引力想象为一种作用在宇宙中每一对物体间的力,一种将物体相互拉近的力。物体的质量越大、距离越近,这个力就越强。更精确地说,这个力正比于物体质量的乘积,反比于它们之间的距离的平方。

这个引力定律是理性的巨大胜利。它与牛顿的运动定律结合,解释了行星绕太阳的轨道,卫星绕行星的轨道,海洋潮汐的涨落和岩石的崩落;让牛顿和他17世纪的同胞们学会了如何去称量太阳和地球。[99]

在从牛顿到爱因斯坦之间的两个世纪中,天文学家对天体轨道的测量有了多方面的进步,牛顿的引力定律经受了越来越严格的检验。偶尔会出现一些新的天文测量不符合牛顿定律,但最终也发现这些观测或对它们的解释是错误的。牛顿定律一次又一次地战胜了实验或理性的错误。例如,当天王星(1781年发现)的运动似乎违背了牛顿引力定律的预言时,人们猜想,很可能是因为一颗尚未发现的行星的引力作用在天王星上,干扰了它的轨道。完全依据牛顿的引力和运动定律以及对天王星的观测所进行的计算,预言了新行星应该在天空的某个地方。1846年,当勒维耶(U.J.J.Leverrier)将他的望远镜瞄准那个位置时,预言的行星果然在那儿出现了,尽管对肉眼而言太模糊,用望远镜看却很光亮。这颗捍卫牛顿定律的行星被命名为“海王星”。

20世纪初,牛顿的引力定律还有两个小小的却令人困惑的矛盾。一个是水星轨道的古怪行为,这最终预示了牛顿定律的失败;另一个是月球轨道的异常,后来发现这是天文学家对测量的解释错了。[100]跟精确测量的通常情形一样,很难在这两个矛盾中判别应该忧虑哪一个。

爱因斯坦正确地猜想,水星的古怪行为(它的近日点的反常移动,见卡片2.2)是真的,而月亮的异常不是真的。水星的古怪“闻起来”是真的,而月亮不是。然而,对爱因斯坦来说,实验与引力定律的这个可疑的矛盾并没有多大意思,也不太重要。他相信,更重要也更有意思的是,牛顿定律将违反他新建立的相对性原理(即那个要求一切物理学定律在每个惯性参照系中必须相同的“形而上原理”)。由于爱因斯坦坚信他的相对性原理,所以牛顿定律如果违反了它,就意味着有问题。[101]

卡片2.2

水星近日点的移动

开普勒(Kepler)曾将水星轨道描绘成以太阳为一个焦点的椭圆(下方左图,轨道椭圆被拉长了)。然而,19世纪的天文学家根据观测发现,水星轨道并不完全是椭圆。水星每沿轨道绕一圈,都不能回到同一个出发点,而是有一点小小的偏离,可以描述为一种移动,即每个轨道在水星离太阳最近的位置发生了移动(轨道的近日点的移动)。天文学家观测到每个轨道的近日点一次移动1.38弧秒(下方右图,移动被夸大了)。



牛顿的引力定律可以解释这1.38弧秒中的1.28弧秒;那是木星和其他行星对水星的引力作用产生的结果。但是,还剩下0.10弧秒的偏差:水星近日点在每个轨道周期中的0.10弧秒的异常移动。天文学家称,他们的测量误差和不确定程度只有0.01弧秒的大小,但考虑到所测角度太小(0.01弧秒相当于人的一根头发的直径在10千米距离处所张的角),我们一点儿也不会奇怪,19世纪末和20世纪初的许多物理学家还会对此表示怀疑,并且期待着牛顿定律的最后胜利。



爱因斯坦的理由很简单:照牛顿的观点,引力依赖于两个吸引物体(如太阳和水星)之间的距离,但根据相对论,这个距离在不同参照系中是不同的。例如,爱因斯坦的相对论定律预言,太阳与水星间的距离依赖于我们是在水星表面测量还是在太阳表面测量,两者会产生大约十亿分之一的差别。如果水星和太阳的这两个参照系在物理学定律看来都一样好,那么应该用哪个参照系来测量出现在牛顿引力定律中的距离呢?不论选择水星的还是太阳的参照系,都会违反相对性原理。这种进退两难的境地,使爱因斯坦确信,牛顿的引力定律一定有问题。

爱因斯坦的胆识令人惊讶。他已经在几乎没有实验证据的情况下抛弃了牛顿的绝对空间和绝对时间,现在他又要在更缺少实验证据的情况下抛弃牛顿获得过巨大成功的引力定律了。不过,激励他的并不是实验,而是他对物理学定律应该怎样的深刻的直觉的洞察。

1907年,在一个写作计划的激发和引导下,爱因斯坦开始寻找新的引力定律。尽管这时他在专利局还只是一个“二级技术员”(刚从三级提升的),但全世界的大物理学家都很尊重他,所以有人请他为年刊《放射学与电子学年鉴》写一篇关于他的相对论物理学定律及其结果的综述。[102]爱因斯坦在写作时发现了一条对科掌研究很有价值的思路:当我们要把一个主题以一种自洽的、一致的、适于教学的方式向公众展开时,我们被迫以新的方式来思考这个题目,被迫去考察它的所有缺陷和问题,并找寻弥补的办法。

在他的主题中,引力是最大的缺陷。狭义相对论和它不受引力作用的惯性系完全忽略了引力的作用。所以,爱因斯坦在写作中,一直在寻找将引力纳入他的相对论定律的途径。像大多数被问题困惑的人一样,即使在没有直接考虑这个问题时,他的内心也还在想着它。于是,在1907年11月的某一天,用爱因斯坦自己的话说,“我正坐在伯尔尼专利局的桌旁时,突然出现一个想法:‘如果一个人自由下落,他将感觉不到自己的重量。’”

你我今天也能有这种想法,但引不出什么结果。爱因斯坦却不同,他会追到思想的尽头,向它们索求每一点灵感。落体的想法是关键的,它指向了引力的革命性的新观点。他后来说它是“我一生中最快乐的思想”。

这个思想的结论滚滚而来,成为爱因斯坦那篇综述中的不朽篇章。假如你自由落下(如从悬崖上跳下),你不仅感觉不到自己的重量,而且还会在所有方面都感到,似乎引力完全从你的邻近消失了。例如,你在下落时从手上放落一些石块,你和石块将肩并肩地下落。如果你看着石块而忽略周围的其他事物,你不能判断自己和石块是在向着地面落下,还是远离引力物而在空中自由飘浮。事实上,在你的邻近,引力是没有作用的,不可能观测到。爱因斯坦认识到,在下落时所携带的小参照系(实验室)里,物理定律与在无引力宇宙中自由运动时必须是相同的。换句话说,你自由下落的小参照系“等效于”无引力宇宙中的惯性参照系,你所经历的物理学定律与在无引力惯性系中的是一样的,它们也就是狭义相对论的定律。(以后我们将知道,为什么参照系必须是小的,“小”的意思是,与地球的大小相比,它很小——或者,更一般地说,与引力在强度和方向上发生改变的范围相比,它很小。)

我们来看一个无引力惯性系与自由下落的小参照系等效的例子,考虑在无引力宇宙中自由运动物体(假定它是一颗炮弹)行为的狭义相对论定律。从那个理想化宇宙中的任何惯性系看,炮弹一定沿直线以均匀速度运动。现在将它与在我们真实的引力宇宙中的运动进行比较:如果炮弹从地球的草地上的大炮中发射出来,从坐在草地上的一只狗来看,它将沿弧线向上,飞到空中,然后落回地球(图2.2)。在狗的参照系中,它沿一条抛物线(黑实线)运动。爱因斯坦请你在一个自由下落的小参照系中观察同一颗炮弹,如果草地有一个悬崖的边缘,这是很容易做到的。你可以在大炮发射时从悬崖跳下去,一边下落一边观察。

为了帮你描绘你下落时所看到的景象,想象你在面前举着一扇有12格玻璃的窗户,你透过玻璃观察炮弹(图2.2中间)。在下落中你会看到像图2.2画的顺时针图像序列。在看这个序列时,要忽略狗、大炮、树木和悬崖,只注意你的窗户格子和炮弹。在你看来,炮弹相对于你的窗户格子以不变的速度沿点画的直线运动。

这样,在狗的参照系里,炮弹服从牛顿定律,沿抛物线运动。在你自由下落的小参照系里,炮弹服从无引力的狭义相对论定律,沿直线匀速运动。而在这个例子中真实的事情在一般情况下也应该是真实的,从这个思想迈出一大步,爱因斯坦认识到:在我们真实的引力宇宙的任何地方的任何自由下落的小参照系中,物理学定律必须与它们在理想化的无引力宇宙的惯性参照系中相同。爱因斯坦称它为等效原理,因为它断言,在引力存在时自由下落的小参照系与没有引力的惯性系是等效的。

图2.2中心:你面前举着带十二个格子的窗户从悬崖上跳下。其余的图,从顶上一幅起,依顺时针方向,是大炮发射时你透过窗户看到的情景。相对于下落的窗户参照系,炮弹的轨迹是点画的直线;相对于狗和地球表面,轨迹是实抛物线



爱因斯坦发现,这一断言有一个极其重要的结论:它意味着,只要我们把真实的引力宇宙中的每一个自由下落的小参照系(例如,你从悬崖上落下时带着的小实验室)都称做“惯性参照系”,那么,狭义相对论在理想的无引力宇宙中的惯性系的一切结果,在真实的宇宙中自然也将是正确的。最重要的是,“相对性原理必须正确:我们真实的引力宇宙中的惯性的(自由下落的)小参照系必须“构造成为等效的”,在物理学定律看来,没有哪个参照系会比其他任何一个更优越,或者,我们可以更准确地说(见第1章):

以在一个惯性的(自由下落的)小参照系中所进行的测量来建立任何物理学定律,那么当以任何其他惯性的(自由下落的)小参照系中所进行的测量来重建这些定律时,它们必须具有与在原来的参照系中完全相同的数学形式和逻辑形式。而且,不论(自由下落的)惯性系是在无引力的星际空间,或者是从地球的悬崖上落下,或者处在我们的银河中心,或者落下来穿过黑洞的视界,它都是正确的。

随着相对性原理向引力的扩张,爱因斯坦向他的新引力定律迈出了第一步——从狭义相对论到广义相对论的第一步。

亲爱的读者,请耐心些,这可能是全书最难的一章。在下一章我们开始黑洞历险时,我的故事就不会这么专业了。

在建立了等效原理以后的几天里,爱因斯坦用它得到了一个令人惊愕的预言,被称为引力的时间膨胀:如果谁相对于引力物体静止,那么,离物体越近,他的时间流越慢。例如,在地球的一间屋子里,时间在地板附近比在天花板附近流得更慢。不过,地球上的快慢差异确实太小了(只有3/1016,即亿亿分之三),探测起来是极端困难的。相反(如我们将在下一章看到的),黑洞附近的引力时间膨胀是巨大的;如果黑洞有10个太阳重,那么在离黑洞视界1厘米的高度上的时间流将比远离视界的时间流慢600万倍,而刚好在视界面上的时间流则完全停止了。(想象一下,有没有可能作时间旅行:假如你正好落到一个黑洞的视界上,在那儿经历一年的视界附近的时间流,然后返回地球,你将发现,在你那一年的时间里,地球已经过干百万年了!)

爱因斯坦发现引力时间膨胀的论证多少有些复杂,但后来他找到了一种简单而优美的证明,漂亮地体现了他的物理学思想方法。这一证明在卡片2.4,[103]它所依赖的光的多普勒频移的解释在卡片2.3。

开始写1907年的综述时,爱因斯坦希望它描述无引力宇宙的相对论,但在写作过程中,他发现了三条线索,可能会使引力与他的相对论相吻合——等效原理、引力时间膨胀和他的相对性原理向引力的扩张——所以,他把这些线索也写进去了。大概在12月初,他把文章寄给了《放射学与电子学年鉴》编辑,然后,全身心地去迎接为引力找一个完全的相对论描述的挑战。[104]

卡片2.3

多普勒频移

当波的发射者和接收者相互靠近时,接收者会发现波向更高的频率移动——即更短的周期和更短的波长。如果发射者和接收者分离,那么接收者会发现波向更低的频率移动——即更长的周期和更长的波长。这叫多普勒频移,是一切类型的波,如声波、水波、电磁波等都具有的性质。





声波的多普勒频移是我们日常熟悉的现象。当救护车尖啸着高速驶过或即将着陆的飞机从头顶飞过时,我们会听到声音突然降低(图b)。想想下面的图,你可能就会理解多普勒频移。

波经历的事情,对脉冲也是正确的。如果发射者发出规则间隔的光(或其他)脉冲,那么,当发射者靠近时,接收者会遇到比在发射时具有更高频率的脉冲(两次脉冲间的时间更短)。



卡片2.4

引力时间膨胀

拿两个相同的钟,一个放在地板上一个洞的旁边(以后钟将落进这个洞),另一个用绳子吊在天花板上。地板钟的嘀嗒由地板附近的时间流决定,而天花板钟的嘀嗒由天花板附近的时间流决定。

每嘀嗒一声,天花板的钟就发出一个极短的光脉冲,指向下面地板上的钟。在天花板的钟刚要发射第一个脉冲前,将吊它的绳子剪断,让它自由下落。假如嘀嗒声的间隔极短,那么在下一声嘀嗒响起并发射第二个脉冲的时刻,还觉察不到钟的下落,相对于天花板它几乎还处在静止状态(图a)。这必然意味着,钟仍然与天花板感受着相同的时间流,也就是说,它的两个脉冲的间隔还是由天花板的时间流决定的。



当第一个脉冲刚要到达地板时,让地板上的钟落进洞(图b)。第二个脉冲跟着也很快到达了,在两个脉冲间,自由下落的地板钟的运动还不能被察觉,相对于地板它几乎还是静止的,从而仍然跟地板感受着相同的时间流。

通过这样的方式,爱因斯坦将比较天花板和地板所感觉的时间流的问题,转化成为比较两个自由下落的钟(感觉天花板时间的下落的天花板钟与感觉地板时间的下落的地板钟)的嘀嗒速度的问题。然后等效原理又让他可以借助狭义相对论定律来比较两个自由下落的钟。

天花板上的钟因为比地板上的钟先落,它向下的速度总比地板钟的大(图b),也就是说,它在向地板钟靠近。这意味着,地板钟将看到天花板钟发出的经历了多普勒频移(卡片2.3)的光脉冲,即它看到的脉冲到达的时间间隔比它自己嘀嗒的时间间隔更短。由于脉冲间的时间是天花板的时间流决定的,而地板钟的嘀嗒是地板的时间流决定的,这就意味着,地板附近的时间流一定比天花板附近的时间流更慢,换句话说,引力必然使时间流发生膨胀。



12月24日,他给朋友写信说,“我现在正忙着考虑与引力定律相联系的相对论……我希望弄清至今还没能解释的水星近日点移动的长期变化……但似乎还没得到什么结果。”到1908年初,还是没有任何实际的进展,爱因斯坦失望了,放弃了,而将注意力转到了原子、分子和辐射的领域(“小东西的天地”),那里的未解之谜在当时看来更容易,也更有趣。[105]

在“小东西的天地”里,爱因斯坦度过了1908年(那年,闵可夫斯基统一了空间和时间,而爱因斯坦却一笑了之),在1909年至1911年期间,他离开了伯尔尼的专利局,在苏黎世大学当过副教授,然后到布拉格——那是奥(地利)—匈(牙利)帝国文化生活的中心——当教授。

爱因斯坦的教授做得不容易。他不得不上一些常规的与他研究不相干的课,这令他恼火。他既没有把讲义备好的劲头,也没有让课程生辉的热情。不过,在讲他心爱的题目时,他却是精彩绝伦的。[106]这个时候,爱因斯坦在欧洲学术界已经完全成熟起来了,但他也在付出代价。尽管代价不小,他在微观领域的研究却在令人瞩目地推进着,产生了后来为他赢得诺贝尔奖奖金的大发现(见卡片4.1)。

后来,1911年中期,爱因斯坦对微观的兴趣消退了,他又将精力转向引力的战场,几乎把全部时间都用上了,到1915年11月,他终于成功地建立了广义相对论。

爱因斯坦在引力问题上斗争的第一个焦点是潮汐引力。

潮汐引力和时空曲率

想象你是一个正在遥远太空的宇航员,自由地向着地球赤道落下。尽管你在下落中感觉不出自己的重量,事实上你还是可以感觉某些小小的剩余的引力效应。这些剩余效应叫“潮汐引力”。我们先以地球上的某个观察者的观点,然后以你自己的观点来考虑你所感觉的引力。

从地球上看[图2.3(a)],作用在你身上不同部位的引力有微小差别。因为你的脚离地球更近,引力对它们的作用比对头的作用更强,所以会从头到脚将你拉长。又因为引力作用总是指向地心,这个方向在你的右侧偏左,在你的左侧偏右,于是,作用在你右侧的引力有点儿向左,而左侧的向右,也就是说,引力把你的两侧挤向中央。

图2.3当你落向地球时,潮汐引力会从头到脚将你拉长而又从两肋将你挤扁



从你的观点看[图2.3(b)],巨大的向下的引力没有了,消失了。你觉得自己失重了。然而,消失的那部分引力只是拉你向下的部分,从头到脚的拉伸和两肋的挤压依然存在着,原因是作用在你身体较外的部分与作用在你身体中心的引力之间的差异,是你自由下落也摆脱不掉的。

你在下落过程中所感觉的垂向拉伸和侧向挤压,叫潮汐引力或引潮力,因为,当引力源是月球而让地球代替你来感觉时,它们会产生海洋潮汐。见卡片2.5。

爱因斯坦在演绎他的等效原理时,没有考虑潮汐引力,他假定它们不存在。(回想一下他论证的基本内容:当你自由下落时,你“不仅感觉不到自己的重量”,而且“你还会在所有方面都感到,似乎引力完全从你的邻近消失了”。)爱因斯坦忽略潮汐引力之所以是正当的,是因为他想象你(和你的参照系)很小。例如,假如你像蚂蚁那么小或者更小,那么你身体的各部分会彼此靠得很近,从而作用在身体外部和中心的引力方向几乎是一样的,引起潮汐拉伸和挤压的引力差异会极端地微弱。反过来讲,如果你是5 000千米高的巨人,那么地球作用在你身体外部和中心的引力在方向和强度上都将产生巨大的差异,当你下落时,你会经受剧烈的潮汐拉伸和挤压。

根据这样的推理,爱因斯坦相信,在自由下落的足够小的参照系(与引力作用变化的范围相比很小的参照系)中,我们不可能探测到任何潮汐引力的影响,也就是说,在我们的引力宇宙中,自由下落的小参照系与无引力宇宙中的惯性系是等效的,但对大参照系就不是这样了。而大参照系所感觉的潮汐力对1911年的爱因斯坦来说,似乎是最终认识引力本质的一个关键。

卡片2.5

潮汐力产生的海洋潮汐

在地球离月球最近的一边,月球的引力比作用在地心的更强,所以它比对固体地球更强烈地将海洋拉向月球,而海洋也会涌向月球。在地球离月球最远的一边,月球引力较弱,所以它对海洋的吸引不如对固体地球那么强烈,海洋也会凸出而远离月球。在地球的左侧,指向月心的引力有一向右的小分量,而在右侧,它有向左的分量,这些分量将海洋向内挤压。当地球自转时,海洋因为这个凸起和挤压的模式,在每天产生两个高潮和低潮。



也许,在你喜欢的海滨,潮汐并不完全是这样活动的,这不是月球引力的失败,而可能因为如下的两个效应:(1)海水对潮汐引力的反应有一定滞后,它在海湾、港口、河道、狭湾等沿海岸线的缺口流进流出,需要时间;(2)太阳引力对地球的拉伸和挤压作用与月球几乎是一样强的,但是因为太阳在空中的位置(通常)与月球不同,所以引力作用的方向不同。地球潮汐是太阳和月球的潮汐引力联合作用的结果。



牛顿引力定律怎样解释潮汐力,现在清楚了:它们是作用在不同地方的引力在强度和方向上产生差异的结果。但牛顿的定律却因为它的引力依赖于距离而必将是错的,它违反了相对性原理(“这个距离应在谁的参照系中测量呢?”)。爱因斯坦的挑战是建立一个全新的引力定律,它可以同时满足相对性原理并以一种简单而令人信服的新方法来解释潮汐引力。

从1911年中期到1912年中期,爱因斯坦试图通过假设时间卷曲而空间平直来解释潮汐引力。这个听起来很极端的想法是引力时间膨胀的自然产物;天花板附近与地板附近时间流的不同速率可以想象为时间的卷曲。爱因斯坦猜测,也许更复杂的时间卷曲模式能产生从潮汐引力到行星椭圆轨道甚至水星近日点反常移动的所有已知的引力效应。

在追寻这个有趣的想法12个月后,爱因斯坦把它放弃了,当然他有很好的理由。时间是相对的,你的时间是我的时间和空间的混合(假如我们彼此相对运动),于是,如果你的时间是卷曲的而你的空间是平直的,那么我的时间和空间将都是卷曲的,其他任何人的也一样。你而且只有你才有平直的空间,所以物理学定律一定会将你的这个与其他参照系根本不同的参照系驱逐出去——因为它违反了相对性原理。

不过,凭爱因斯坦的感觉,时间卷曲“味道不错”,那么,也许——他想——每个人的时间都是卷曲的,相应的不可避免的是,每个人的空间也是卷曲的。也许这样联合的卷曲可以解释潮汐引力。

时间和空间两个都卷曲的想法是很吓人的。因为宇宙允许有无穷多个不同的参照系,每一个都以不同速度运动,那么将不得不有无穷多个卷曲的时间和无穷多个卷曲的空间!幸运的是,爱因斯坦认识到,闵可夫斯基已经为简化这个复杂的状态提供了有力的工具:“从今往后,空间和时间本身都将注定在黑暗中消失,只有二者的一种结合能保持为一个独立的实体。”在我们的宇宙中,只有一个惟一的绝对的四维时空,而每个人的时间和空间的卷曲,必然表现为闵可夫斯基单独的惟一的绝对时空的一种卷曲。

这是爱因斯坦在1912年夏天被迫得到的结论(不过他更喜欢说“曲率”,不说“卷曲”)。4年来,他一直在嘲笑闵可夫斯基的绝对时空,最后,他终于被迫接受了它,并让它发生卷曲。

时空会弯曲(或卷曲),是什么意思?为了讲清楚,我们先问,二维面的弯曲(或卷曲)意味着什么?图2.4画了一个平面和一个曲面。在平面(一张普通的纸)上画了两条绝对直的线,两条线并列延伸,是平行的。古希腊数学家欧几里得(他创立了现在称为“欧几里得几何”的学科)曾将两条初始平行的直线永不相交的要求作为他的一个几何假设。对平行直线所在的面来说,永不相交是确认面的平直性的铁证。如果空间是平直的,那么初始平行的直线永远不会相交。如果我们找到一对原先平行的直线确实相交了,那么我们将知道,空间不是平直的。

图2.4中的曲面是地球的球面。我们在球面上找到厄瓜多尔首都基多,它坐落在赤道上。从基多出发,画一条指向北方的完全直线,直线将在同一经度上向北延伸,穿过北极。

图2.4在像左图的纸片那样的平面上,两条原先平行的直线永不相交。在像右图的地球球面那样的曲面上,两条原先平行的直线通常会相交



在什么意义上说它是一条直线呢?有两种意义。一种意义对航空公司来说是极其重要的:直线是一个大圆,而地球球面上的大圆是两点间的最短路线,也就是航空公司愿意飞行的路线。任意另画一条联结基多与北极的路线,一定会比大圆长。

第二种平直性的意义我们在下面讨论时空时还会用到:在球面上沿大圆路径足够小的区域内,球面的曲率几乎测不出来。在这个区域,大圆看来是直的,就像我们通常在平坦的纸上所说的直线那样——这也是专业测量员在用经纬仪或激光束确定地产边界时所用的直线意义。在测量员的这个意义上,在沿大圆路径的每个区域内,大圆都是直线。

在弯曲或卷曲面上的任何路径,如果在这两种意义(航空上“最短路径”的意义和测量员的意义)上是直线,数学家就称它们是测地线。

现在,让我们在球面上从基多出发向东移动几厘米,画一条在赤道上完全与通过基多的那条线平行的新直线(大圆,测地线)。这条直线跟第一条一样,将经过球的北极。令这两条原先平行的直线后来在北极点相交的,正是球面的曲率。

明白了二维面上的曲率效应,我们就可以转向四维时空,去看看那里的曲率。

在理想化的无引力宇宙中,既没有空间的卷曲,也没有时间的卷曲,时空没有曲率。根据爱因斯坦的狭义相对论,在这个宇宙中自由下落的粒子必然沿绝对的直线运动,在任何一个惯性参照系看来,它们都必然保持相同的方向和相同的速度。这是狭义相对论的基本原则。

现在,爱因斯坦的等效原理保证,引力不会改变自由运动的这一基本原则:当在我们真实的引力宇宙中自由运动的粒子进入并穿过一个小惯性(自由下落的)参照系时,它必然沿直线穿过参照系。然而,穿过小参照系的直线运动,显然类似于测量员在地球表面的一个小区域内所观测的直线行为;正如这种在地球小区域内的直线意味着直线实际上是地球表面的测地线一样,粒子在时空小区域内的直线运动也意味着粒子沿时空中的测地线运动。而这一个粒子经历的事情,对所有粒子也一定是正确的:每个自由运动的粒子(每个不受引力之外的任何力作用的粒子),沿时空测地线运动。

认识到这一点后不久,对爱因斯坦来说,潮汐引力是时空曲率的一个表现,就成为显然的事实了。

为说明这是为什么,我们来看下面的(我的,不是爱因斯坦的)思想实验。你一只手拿一个小球站在北极的冰层上(图2.5),同时将两球抛向空中,使它们沿精确的平行轨道上升,然后观察它们落回地球。现在,在我们这个思想实验中,你可以做你愿意做的任何事情,只要它不违反物理学定律。你不但想观察引力作用下的球在地球表面以上的轨迹,还想观察它在地表下的轨迹。为此,你可以假想球是特殊材料制成的,可以毫不减速地穿过地球的土壤和岩石(小黑洞可能具有这种性质),你还可以假想,你和一个站在地球另一端观察的朋友,可以通过“X射线图像”跟踪球在地球内部的运动。

图2.5两个沿精确平行路线抛入空中的球,如果能无阻碍地穿过地球,则它们会在地心附近相撞



球落入地球后,会因地球的潮汐引力而挤到一起,就像下落的宇航员两肋被挤压一样(图2.3)。潮汐引力的强度正好使两球几乎精确地落向地心,并在那儿相撞。

现在我们来总结一下这个思想实验:每个球在时空中沿完全的直线(测地线)运动,两条直线初始是平行的,后来相交了(球发生碰撞)。原先平行的直线相交了,这是时空曲率的标志。从爱因斯坦的观点看,时空曲率导致平行线相交,即导致两球相撞,就像图2.4中地球的曲率导致直线相交一样。从牛顿的观点看,潮汐引力导致两球相撞。

这样,因为在空间和时间本性上存在迥然不同的观点,爱因斯坦和牛顿对导致平行线相交的原因有完全不同的说法,爱因斯坦说它是时空曲率,牛顿说它是潮汐引力。但只有一个原因在起作用,因此,时空曲率和潮汐引力必然完全是以不同语言表达的同一件事情。

我们人类的头脑很难想象高于二维的曲面的图像,于是,几乎不可能形象地表现四维时空的曲率。不过,从不同的二维时空碎片,我们还是能看出一些事情。图2.6用两个时空碎片来解释时空曲率如何产生引起海洋潮汐的潮汐拉伸和挤压。

图2.6地球附近的两片二维弯曲时空,曲率由月球产生。曲率在朝着月球的方向产生潮汐拉伸(a),在横向上产生挤压(b),拉伸和挤压以卡片2.5讨论的方式产生海洋潮汐



图2.6(a)描绘的是地球附近的时空碎片,包括时间和朝月球方向的空间。月球使这块时空弯曲,曲率以图中所示的方式将两条测地线拉开。相应地,我们看到两个沿测地线旅行的自由运动粒子被拉开了,我们将这个拉开的作用解释为潮汐引力。拉伸作用的潮汐力(时空曲率)不仅影响自由运动粒子,也影响地球海洋,它像我们在卡片2.5中所看到的那样,在地球离月球最近和最远的一端掀起浪潮。浪潮也试图沿着弯曲时空的测地线运动[图2.6(a)],从而也试图飞起来分开,但地球的引力(地球产生的时空曲率,没画在图中)不让它们飞起来,所以海洋只能在地球上汹涌。

图2.6(b)是地球附近的另一块时空碎片,包括时间和沿垂直于月球方向的空间。月球使这块时空发生弯曲,曲率像图中那样将测地线挤压在一起。相应地,我们看到两个沿着垂直于月球方向的测地线旅行的自由运动粒子被曲率(月球的潮汐引力)挤在一起,同样,我们也看到地球海洋在垂直于月球的方向上被挤扁了。这种潮汐的挤压作用导致我们在卡片2.5中所看到的海洋的横向压缩。

1912年夏,爱因斯坦发现潮汐引力与时空曲率是同一样东西时,是布拉格的教授。这是一个惊人的发现——尽管,他还不是那么肯定,理解也不像我描述的那么完全,也没有为引力提出一个完全的解释。它告诉爱因斯坦,时空曲率决定了自由粒子的运动,掀起了海洋的潮汐,但没有告诉他曲率是怎么产生的。爱因斯坦相信,太阳、地球和行星内部的物质以某种方式决定着曲率,但那是什么方式呢?物质如何使时空卷曲,卷曲的具体情况又是怎样的呢?寻找卷曲的定律,成了爱因斯坦最关心的事情。

在“发现”时空曲率几个星期后,爱因斯坦离开布拉格回到苏黎世,到他的母校ETH当教授。1912年8月,爱因斯坦刚到苏黎世就去请教老同学格罗斯曼(Marcel Grossmann),现在是那儿的数学教授。爱因斯坦向他解释了潮汐引力是时空曲率的思想,然后问他,有没有什么数学家已经建立的数学方程能帮他发现卷曲的定律,也就是描述物质如何令时空弯曲的定律。格罗斯曼没把握,他的专业在几何的其他方面。不过,去图书馆浏览后,他回来说,有的,确实有需要的方程。这些方程主要是德国数学家黎曼(Bernhard Riemann)在19世纪60年代、意大利的里奇(Gregorio Ricci)在80年代以及里奇的学生勒维—契维塔(Tullio Levi-Civita)在19世纪90年代和20世纪初建立起来的,叫“绝对微分计算”(或者,用1915~1960年间物理学家的语言说,“张量分析”)。不过,格罗斯曼告诉爱因斯坦,微分几何太乱了,物理学家不应该卷进来。还有别的可以用来揭示卷曲定律的几何吗?没有。

就这样,在格罗斯曼的大力协助下,爱因斯坦决定掌握复杂的微分几何,格罗斯曼教爱因斯坦数学,爱因斯坦也教格罗斯曼一些物理学的东西。后来,爱因斯坦引格罗斯曼的话说,“我承认,我毕竟还是通过物理学习得到了一些相当重要的东西。以前,当我坐在椅子上感觉到‘前坐者’的余温时,总有点儿不舒服,现在这种感觉完全没有了。因为,在这一点上物理学家已经告诉了我,热是完全与个人无关的东西。”

学微分几何对爱因斯坦并不是件容易的事情。这门学科的精神同他那自然的直觉的物理学论证是格格不入的。1912年10月底,他给索末菲(Arnold Sommerfeld,一个德国大物理学家)写信说,“我自己现在完全被引力问题占据了,我也相信,在当地的一个数学家朋友[格罗斯曼]的帮助下,我会有能力克服所有的困难。但有一点是肯定的,在我的一生中,还从来没有这么艰难地奋斗过,而且我已经对数学充满了敬佩,它那精妙的部分至今在我简单的头脑中还只能认为是一种奢望!同这个问题比起来,原先的相对性理论[狭义相对论]不过是儿童游戏。”

面对物质如何令时空弯曲的疑惑,爱因斯坦同格罗斯曼一道,从秋天奋斗到冬天,但不论多大的努力,都没能使数学与爱因斯坦的想象相吻合,卷曲的定律在躲着他们。

爱因斯坦确信,卷曲的定律应该服从推广(扩大)形式的相对性原理:对每一个参照系——不仅是惯性(自由下落的)系,还包括非惯性系,它都应该是一样的。卷曲的定律不应为了自己的形式而依赖于任何特殊的参照系或者什么特殊类型的参照系。[107]痛苦的是,微分几何的方程似乎不允许有这样的定律。在暮冬时候,爱因斯坦和格罗斯曼最终放弃了寻找,发表了他们所能发现的最好的卷曲定律——为了某种确定性而依赖于一类特殊参照系的定律。

永远乐观的爱因斯坦努力使自己相信,简单说,就是相信这不是什么灾难。1913年初,他在给朋友物理学家埃伦费斯特(Paul Ehrenfest)的信中说,“还有什么能比从[能量和动量守恒的数学方程]得到的必然限制更美妙的呢?”但进一步考虑后,他认为这是一个灾难。1913年8月,他写信给洛伦兹说,“我对这个理论[‘卷曲的定律’]的可靠性的信心还在动摇……[因为不能遵从一般的相对性原理],这个理论背离了它自己的出发点,一切都悬而未决。”

当爱因斯坦和格罗斯曼在跟时空曲率斗争时,遍布欧洲大陆的其他物理学家担起了统一引力定律和狭义相对论的挑战。但是,他们——芬兰赫尔辛基的诺德斯特勒姆(Gunnar Nordstrφsm)、德国格赖夫斯瓦尔德的米(Gustar Mie)、意大利米兰的亚伯拉罕(Max Abraham)——没有一个人采纳了爱因斯坦的时空曲率观点,而是像电磁那样将引力当成一种活动在闵可夫斯基的平直的狭义相对论时空中的力场。他们采用这种方法也并不奇怪:爱因斯坦和格罗斯曼所用的数学吓人地复杂,而且得到的卷曲定律违反了作者自己的原则。

在不同观点的拥有者之间,发生了激烈的论战。亚伯拉罕写道:“像本作者一样曾不得不反复告诫要警惕[相对性原理]的诱惑的人,将满意地欢迎这样的事实:它的创始者现在已经令自己相信它是不可能维持下去的。”爱因斯坦在答复中写道:“照我的意见,这种情况并不说明相对性原理失败了……没有一点儿根据怀疑它的有效性。”私下里,他把亚伯拉罕的引力理论描述成“一匹缺了三条腿的高贵马儿”。在1913年和1914年间写给朋友们的信中,爱因斯坦谈了这场争论,“我喜欢这个,至少事情有了必要的生气,我欣赏这种争论,费加罗式的:他想跳舞,我愿为他伴奏。[108]”“我很高兴,同行们都投身到这个[格罗斯曼和我发展起来的]理论中来了,尽管他们现在的目的是要抹煞它……从表面看,诺德斯特勒姆的理论……似乎合理得多,但它也是建立在[平直的闵可夫斯基时空]的,我感到,人们对[平直时空]的信仰,差不多像某种迷信了。”

1914年4月,爱因斯坦离开苏黎世,到柏林做一名不用讲课的教授。他终于可以如愿地尽情工作了,甚至在柏林的大物理学家普朗克和能斯特(Walther Nernst)的影响里,他还是这么做。尽管在1914年爆发了第一次世界大战,爱因斯坦在柏林仍然继续追寻着一个能让人接受的关于物质如何使时空发生弯曲的描述,一个不依赖于任何特殊类型的参照系的描述——一个改进的关于卷曲的定律。

从柏林坐3个小时火车就来到闵呵夫斯基曾经工作过的哥廷根大学村,历史上最伟大的数学家之一,大卫·希尔伯特(David Hilbert)就在那里。在1914和1915年间,他对物理学产生了强烈的兴趣。爱因斯坦发表的思想令他着迷。于是,1915年6月底,他邀请爱因斯坦来访问。爱因斯坦去了约一个星期,为希尔伯特和他的同事们作了6次两个小时的演讲。访问过了几天以后,爱因斯坦给朋友写信说,“看到[关于我工作的]每件事情在哥廷根都能得到最彻底的理解,我真太高兴了。希尔伯特也令我着迷。”

回柏林几个月后,爱因斯坦—格罗斯曼卷曲定律令他比以前更痛苦。它不但违反了他的引力定律应在所有参照系相同的理想,而且,经过艰难计算后,他还发现,得到的水星轨道近日点的异常移动值是错的。他原希望这个理论能够解释这个近日点移动,从而胜利解决移动与牛顿定律的偏差,这个成果至少能带来一点实验证据,证明他的引力定律是对的,而牛顿的是错的。然而,他在爱因斯坦—格罗斯曼卷曲定律基础上的计算却只得到了观察到的近日点移动的一半。

爱因斯坦彻底检查了他和格罗斯曼过去的计算,发现几个关键性的错误。整个10月,他都在满怀激情地工作。11月4日,他在柏林的普鲁士科学院周末全体会议上提交了关于他的错误和修正的卷曲定律的报告——定律对一类特殊的参照系仍存在一定依赖性,不过不像以前那么强。

爱因斯坦还是不满意,他又同11月4日的定律斗争了一个星期,发现了错误,向11月11日的科学院大会又提出一个卷曲定律的建议。但是,定律还是依赖于特殊参照系,仍然违背他的相对性原理。

就让它违背下去吧。接下来的一个星期里,爱因斯坦计算了他的新定律的可以通过望远镜观测的结果。他发现定律预言,经过太阳边缘的星光应被引力偏转1.7弧秒的角度(4年以后在一次日食中进行的精确测量将证实这个预言)。而对爱因斯坦最重要的是,新定律给出了正确的水星近日点移动!他欣喜若狂,兴奋得3天做不了事情。在11月18日的科学院大会上,他报告了这个胜利。

但是,他的定律违背相对性原理,这仍令他烦恼。于是,他在下个星期又检查了计算,发现了另外的错误——最关键的一个。终于,一切都明白了,整个数学体系现在都摆脱了对特殊参照系的任何依赖:在任意一个参照系中定律都有相同的形式(见下面的卡片2.6),因此服从相对性原理。爱因斯坦1914年的理想完全实现了!新的公式对水星近日点进动和光的引力偏折给出相同的预言,而且把他1907年的引力时间膨胀的预言也包括进来了。11月25日,爱因斯坦向普鲁士科学院报告了他这些结果和他的广义相对论的最终确定形式。[109]

3天后,爱因斯坦给朋友索末菲写信说:“在过去的一个月里,我度过了一生中最兴奋、最艰苦但也最成功的时光。”接着,在[1916年]1月给埃伦费斯特的信中,他说:“你能想象我有多快乐[我的新的卷曲定律遵从相对性原理],它还预言了正确的水星近日点的运动。我狂喜了几天。”后来,他谈了这个时期的感受:“在黑暗中找寻我们感觉得到却表达不出的真理的年月里,那强烈的欲望和动摇的信心以及成功前的焦虑,只有亲身经历过的人才能体会。”

值得注意的是,爱因斯坦并不是第一个发现卷曲定律的正确形式(服从相对性原理的形式)的人,第一个发现者应该是希尔伯特。1915年秋,当爱因斯坦还在向正确定律努力,数学错误接连不断时,希尔伯特也在考虑他从爱因斯坦夏季来哥廷根访问时学来的东西。他在波罗的海的陆根岛度假时,突然产生一个关键的想法,几个星期后,他得到了正确的定律——他没有走爱因斯坦那条艰难的试错路线,而是走一条优美而简捷的数学道路。1915年11月20日,希尔伯特向哥廷根的皇家科学院报告了他的推导和最后的定律,正好比爱因斯坦在柏林向普鲁士科学院报告相同定律早5天。

不过,最后的卷曲定律很快被称为爱因斯坦场方程(卡片2.6),而没有用希尔伯特的名字来命名,这是很自然的,也符合希尔伯特自己对事情的看法。希尔伯特独立并几乎与爱因斯坦同时完成了这个发现的最后几个数学步骤,但爱因斯坦发现了这些步骤之前的几乎一切东西:认识了潮汐引力与时空卷曲必须是同一件事情,设想卷曲定律必然服从相对性原理,它们是这个定律(爱因斯坦场方程)的90%。事实上,如果没有爱因斯坦,引力的广义相对论定律可能会晚发现几十年。

卡片2.6

爱因斯坦场方程:爱因斯坦的时空卷曲定律[110]

爱因斯坦的时空卷曲定律,即爱因斯坦场方程指出,“物质和压力使时空卷曲。”更具体地说:

在时空任一位置任选一个参照系,通过研究在这个选定的参照系的三个方向(东—西、南—北和上—下)上曲率(即潮汐引力)将自由运动的粒子推近或拉开的方式来寻找时空的曲率。粒子沿时空的测地线运动(图2.6),它们被推近或拉开的速率正比于它们之间的方向上的曲率大小。如果它们像在图(a)和(b)中那样被推近,我们就说曲率是正的;如果它们像在图(c)中那样被拉开,曲率就是负的。



将东—西[图(a)]、南—北[图(b)]和上—下[图(c)]三个方向上的曲率加起来,爱因斯坦场方程指出,这三个曲率大小的和正比于粒子附近的质量密度(乘以光速的平方化为能量密度,见卡片5.2)加上粒子附近物质压力的3倍。

即使你和我可能处在时空的同一位置(如,1996年7月14日中午飞在法国巴黎上空),如果我们彼此相对运动,你的空间将不同于我的,同样,你测量的质量密度(如我们周围空气的质量)也将不同于我测量的密度,我们测量的物质压力(如空气压力)也将不同。同样,你测量的三个时空曲率之和也将不同于我测量的和。然而,你和我都一定会发现,我们测量的曲率之和正比于我们测量的质量密度加上我们测量的压力的3倍。在这个意义上,爱因斯坦场方程在每个参照系中都是一样的。它服从爱因斯坦的相对性原理。

在大多数情况下(如整个太阳系),物质的压力与它的质量密度乘以光速平方相比很小,因而压力对时空曲率的贡献是不重要的;时空卷曲几乎只归因于质量。只有在中子星内部深处(第3章)和其他特别的地方,压力对卷曲的贡献才有意义。

通过爱因斯坦场方程的数学计算,爱因斯坦和其他物理学家不但解释了光线被太阳的偏折和行星在轨道上的运动(包括奇怪的水星近日点的移动),而且还预言了黑洞(第3章)、引力波(第10章)、时空奇点(第13章)的存在,也许还有虫洞和时间机器(第14章)的存在。本书其余部分就用来讨论爱因斯坦这些天才的遗物。



当我浏览爱因斯坦发表的科学论文时(很遗憾,我只能看1965年的俄文本选集,因为我不懂德文,而他的大多数论文到1993年才开始译成英文)[111],我惊讶地发现他的研究风格在1912年发生了巨大的改变。1912年前,他的文章以优美的文笔、深刻的直觉和简单的数学而令人赏心悦目,其中许多论证跟我们在90年代讲相对论时所用的是一样的,没入想去改进它们。相反,1912年以后,爱因斯坦的论文里出现了大量复杂的数学——尽管通常结合着他对物理学定律的洞察。这种数学与物理学洞察的结合,在1912~1915年间所有在引力领域工作的物理学家中,只有爱因斯坦才有,它最终将他引向了引力定律的完全形式。

但是,爱因斯坦的数学工具用得有点儿笨拙,像希尔伯特后来说的,“哥廷根街上的每个小孩儿都比爱因斯坦更理解四维几何。不过,尽管如此,爱因斯坦还是做成了这件事[建立引力的广义相对论定律],而数学家没有。”他之所以做成了,是因为这件事仅有数学是不够的,还需要他那独特的物理学洞察。

实际上,希尔伯特说得过分了。爱因斯坦是一个很不错的数学家,尽管,他在数学技巧上不像在物理学洞察中那样算得上是一个大师。结果,我们现在很少用爱因斯坦1912年以后提出的形式来讨论他当时的论证,我们已经学会了更好的形式。而且,随着1915年过后,物理学定律的数学味道越来越浓,爱因斯坦当年那个巨人的身影也越来越淡,火炬已经传给了别人。





第3章 黑洞,发现与拒绝


爱因斯坦的卷曲时空定律

预言了黑洞,

爱因斯坦拒绝了这个预言





“至于为什么‘史瓦西奇点’不存在于物理学实体中”,1939年,爱因斯坦在一篇论文中写道,“这个考察的基本结果说得很清楚了。”[112]爱因斯坦用这句话明确地拒绝了他自己的理性财产:他的广义相对论引力定律似乎正在预言的黑洞。

那时,根据爱因斯坦的定律还只能得到黑洞的几个性质,而“黑洞”这个名字也还没有,它们被称为“史瓦西奇点”。不过,人们已经明白,落入黑洞的任何事物不可能再逃出来,也不可能发出光或其他东西,而这已经足以让爱因斯坦和他那个时代的大多数物理学家相信,黑洞是可怕的怪物,肯定不会存在于真实宇宙中。物理学定律一定会以某种方法使宇宙不受这种怪物的侵害。

爱因斯坦如此强烈地拒绝黑洞,那么,关于黑洞,他们那时都知道些什么呢?广义相对论关于黑洞存在的预言有多大力量?爱因斯坦怎么能拒绝这个预言而仍然相信他的广义相对论的定律呢?这些问题的答案有着18世纪的渊源。

在整个18世纪,科学家(那时叫自然哲学家)们相信,引力服从牛顿定律,光由光源以极高的普适速度发出的微粒(粒子)组成。通过望远镜对木卫在绕木星的轨道上所发出的光的测量,知道光速大约是每秒300 000千米。

1783年,英国自然哲学家米歇尔(John Michell)大胆地将光的微粒描述与牛顿的引力定律结合,从而预言了非常致密的星体应该是什么样的。[113]我把他的思想实验换个说法重复一遍。

在一颗星体的表面,以某初始速度抛出一个粒子让它自由向上运动。如果初始速度太低,星体引力将减慢粒子速度,使它停下来,然后将它拉回星体表面。如果初始速度足够大,引力也将使粒子慢下来,但不会使它停止,粒子将设法逃掉。回落与逃逸的界线,即为了逃逸的最小初始速度,叫“逃逸速度”。对从地球表面抛出的粒子来说,逃逸速度是每秒11千米,从太阳表面抛出的粒子,逃逸速度为每秒617千米,或光速的0.2%。

米歇尔能用牛顿的引力定律计算逃逸速度,证明它正比于星体质量除以其周长的平方根。因此,对质量一定的星体来说,周长越小,逃逸速度越大。理由很简单:周长越小,星体表面离中心越近,因而表面的引力越强,粒子为了逃脱星体的引力作用就越困难。

米歇尔推论,存在一个临界周长,对它来说逃逸速度是光速。如果光微粒像其他类型的粒子一样受引力作用,那么光几乎不能从具有临界周长的星体逃逸出去。对更小的星体光就完全不能逃逸了。如果以标准光速299 792千米/秒从这样的星体发射一颗光微粒,微粒起初会向上,然后慢慢停下来,又落回星体表面,见图3.1。

图3.1米歇尔1783年用牛顿引力定律和光的微粒描述计算的从比临界周长小的星体发出的光的行为



米歇尔能够很容易地计算临界周长。假如星体与太阳有相同质量,那么周长是18.5千米,而且随质量成比例地增大。

18世纪的物理学定律无法阻止如此致密星体的存在,因此,米歇尔猜想,宇宙中可能存在大量这样的黑(暗)星,它们都圆满地存在于自己的临界周长内,从地球看不到它们,因为从它表面发出的光微粒都被无情地拉回去了。这样的暗星就是黑洞在18世纪的形式。

米歇尔是英格兰约克郡桑希尔的教区长,1783年11月27日,他向皇家学会报告了也许存在暗星的预言。报告在英国自然哲学界产生了一点影响。13年后,法国自然哲学家拉普拉